This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negcncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ - 𝑥 ) | |
| Assertion | negcncf | ⊢ ( 𝐴 ⊆ ℂ → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ - 𝑥 ) | |
| 2 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 3 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) | |
| 4 | ovmpot | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - 1 ( 𝑎 ∈ ℂ , 𝑏 ∈ ℂ ↦ ( 𝑎 · 𝑏 ) ) 𝑥 ) = ( - 1 · 𝑥 ) ) | |
| 5 | 4 | eqcomd | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - 1 · 𝑥 ) = ( - 1 ( 𝑎 ∈ ℂ , 𝑏 ∈ ℂ ↦ ( 𝑎 · 𝑏 ) ) 𝑥 ) ) |
| 6 | 2 3 5 | sylancr | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( - 1 · 𝑥 ) = ( - 1 ( 𝑎 ∈ ℂ , 𝑏 ∈ ℂ ↦ ( 𝑎 · 𝑏 ) ) 𝑥 ) ) |
| 7 | 3 | mulm1d | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( - 1 · 𝑥 ) = - 𝑥 ) |
| 8 | 6 7 | eqtr3d | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( - 1 ( 𝑎 ∈ ℂ , 𝑏 ∈ ℂ ↦ ( 𝑎 · 𝑏 ) ) 𝑥 ) = - 𝑥 ) |
| 9 | 8 | mpteq2dva | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ ( - 1 ( 𝑎 ∈ ℂ , 𝑏 ∈ ℂ ↦ ( 𝑎 · 𝑏 ) ) 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ - 𝑥 ) ) |
| 10 | 9 1 | eqtr4di | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ ( - 1 ( 𝑎 ∈ ℂ , 𝑏 ∈ ℂ ↦ ( 𝑎 · 𝑏 ) ) 𝑥 ) ) = 𝐹 ) |
| 11 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 12 | 11 | mpomulcn | ⊢ ( 𝑎 ∈ ℂ , 𝑏 ∈ ℂ ↦ ( 𝑎 · 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 13 | 12 | a1i | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑎 ∈ ℂ , 𝑏 ∈ ℂ ↦ ( 𝑎 · 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 14 | ssid | ⊢ ℂ ⊆ ℂ | |
| 15 | cncfmptc | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ - 1 ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 16 | 2 14 15 | mp3an13 | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ - 1 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 17 | cncfmptid | ⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 18 | 14 17 | mpan2 | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 19 | 11 13 16 18 | cncfmpt2f | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ ( - 1 ( 𝑎 ∈ ℂ , 𝑏 ∈ ℂ ↦ ( 𝑎 · 𝑏 ) ) 𝑥 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 20 | 10 19 | eqeltrrd | ⊢ ( 𝐴 ⊆ ℂ → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |