This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008) (Revised by Mario Carneiro, 3-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climsqz.5 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| climsqz.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| climsqz.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | ||
| climsqz2.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| climsqz2.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ≤ ( 𝐺 ‘ 𝑘 ) ) | ||
| Assertion | climsqz2 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climadd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climadd.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 4 | climsqz.5 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 5 | climsqz.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 6 | climsqz.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | |
| 7 | climsqz2.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 8 | climsqz2.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ≤ ( 𝐺 ‘ 𝑘 ) ) | |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 11 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ⇝ 𝐴 ) |
| 13 | 1 9 10 11 12 | climi2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
| 14 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 15 | 1 2 3 5 | climrecl | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
| 17 | 6 5 16 7 | lesub1dd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ≤ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 18 | 16 6 8 | abssubge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) = ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) |
| 19 | 16 6 5 8 7 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 20 | 16 5 19 | abssubge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 21 | 17 18 20 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 22 | 21 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 23 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 24 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
| 25 | 23 24 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ ) |
| 26 | 25 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ∈ ℂ ) |
| 27 | 26 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ) |
| 28 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 29 | 28 24 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ ) |
| 30 | 29 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℂ ) |
| 31 | 30 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ) |
| 32 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑥 ∈ ℝ ) |
| 34 | lelttr | ⊢ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) | |
| 35 | 27 31 33 34 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 36 | 22 35 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 37 | 14 36 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 38 | 37 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 39 | 38 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 40 | 39 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 41 | 13 40 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
| 42 | 41 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) |
| 43 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 44 | 15 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 45 | 6 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 46 | 1 2 4 43 44 45 | clim2c | ⊢ ( 𝜑 → ( 𝐺 ⇝ 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 47 | 42 46 | mpbird | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |