This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcncf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climcncf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climcncf.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) | ||
| climcncf.5 | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝐴 ) | ||
| climcncf.6 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐷 ) | ||
| climcncf.7 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | ||
| Assertion | climcncf | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ⇝ ( 𝐹 ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcncf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climcncf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climcncf.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ) | |
| 4 | climcncf.5 | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝐴 ) | |
| 5 | climcncf.6 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐷 ) | |
| 6 | climcncf.7 | ⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) | |
| 7 | cncff | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
| 10 | cncfrss2 | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) → 𝐵 ⊆ ℂ ) | |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 12 | 11 | sselda | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 13 | 9 12 | syldan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 14 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 15 | fex | ⊢ ( ( 𝐺 : 𝑍 ⟶ 𝐴 ∧ 𝑍 ∈ V ) → 𝐺 ∈ V ) | |
| 16 | 4 14 15 | sylancl | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 17 | coexg | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝐺 ∈ V ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) | |
| 18 | 3 16 17 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
| 19 | cncfi | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝐷 ∈ 𝐴 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐷 ) ) ) < 𝑥 ) ) | |
| 20 | 19 | 3expia | ⊢ ( ( 𝐹 ∈ ( 𝐴 –cn→ 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐷 ) ) ) < 𝑥 ) ) ) |
| 21 | 3 6 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐷 ) ) ) < 𝑥 ) ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐴 ( ( abs ‘ ( 𝑧 − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐷 ) ) ) < 𝑥 ) ) |
| 23 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐴 ) |
| 24 | fvco3 | ⊢ ( ( 𝐺 : 𝑍 ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 25 | 4 24 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 26 | 1 2 6 13 5 18 22 23 25 | climcn1 | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ⇝ ( 𝐹 ‘ 𝐷 ) ) |