This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 3-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lerec | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrec | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 𝐵 < 𝐴 ↔ ( 1 / 𝐴 ) < ( 1 / 𝐵 ) ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐵 < 𝐴 ↔ ( 1 / 𝐴 ) < ( 1 / 𝐵 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( 1 / 𝐴 ) < ( 1 / 𝐵 ) ) ) |
| 4 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 5 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) | |
| 6 | 4 5 | lenltd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
| 7 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < 𝐵 ) | |
| 8 | 7 | gt0ne0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐵 ≠ 0 ) |
| 9 | 5 8 | rereccld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / 𝐵 ) ∈ ℝ ) |
| 10 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < 𝐴 ) | |
| 11 | 10 | gt0ne0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 𝐴 ≠ 0 ) |
| 12 | 4 11 | rereccld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 13 | 9 12 | lenltd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ↔ ¬ ( 1 / 𝐴 ) < ( 1 / 𝐵 ) ) ) |
| 14 | 3 6 13 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 1 / 𝐵 ) ≤ ( 1 / 𝐴 ) ) ) |