This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of reciprocals of positive integers, multiplied by the factor A , converges to zero. (Contributed by NM, 6-Feb-2008) (Revised by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcnv | ⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) ⇝ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnrp | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) | |
| 2 | 1 | ssriv | ⊢ ℕ ⊆ ℝ+ |
| 3 | 2 | a1i | ⊢ ( 𝐴 ∈ ℂ → ℕ ⊆ ℝ+ ) |
| 4 | divrcnv | ⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℝ+ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ) | |
| 5 | 3 4 | rlimres2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ) |
| 6 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 7 | 1zzd | ⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℤ ) | |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℂ ) | |
| 9 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 11 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 13 | 8 10 12 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( 𝐴 / 𝑛 ) ∈ ℂ ) |
| 14 | 13 | fmpttd | ⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) : ℕ ⟶ ℂ ) |
| 15 | 6 7 14 | rlimclim | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ↔ ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) ⇝ 0 ) ) |
| 16 | 5 15 | mpbid | ⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( 𝐴 / 𝑛 ) ) ⇝ 0 ) |