This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanrecl | ⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → 𝐴 = 0 ) | |
| 2 | 1 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) = ( arctan ‘ 0 ) ) |
| 3 | atan0 | ⊢ ( arctan ‘ 0 ) = 0 | |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | 3 4 | eqeltri | ⊢ ( arctan ‘ 0 ) ∈ ℝ |
| 6 | 2 5 | eqeltrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
| 7 | atanre | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ dom arctan ) |
| 9 | atancl | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) ∈ ℂ ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( arctan ‘ 𝐴 ) ∈ ℂ ) |
| 11 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 13 | rere | ⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ 𝐴 ) = 𝐴 ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
| 15 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) | |
| 16 | 14 15 | eqnetrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 17 | atancj | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ≠ 0 ) → ( 𝐴 ∈ dom arctan ∧ ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) ) | |
| 18 | 12 16 17 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∈ dom arctan ∧ ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 19 | 18 | simprd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) |
| 20 | cjre | ⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) = 𝐴 ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( arctan ‘ ( ∗ ‘ 𝐴 ) ) = ( arctan ‘ 𝐴 ) ) |
| 23 | 19 22 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ ( arctan ‘ 𝐴 ) ) = ( arctan ‘ 𝐴 ) ) |
| 24 | 10 23 | cjrebd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( arctan ‘ 𝐴 ) ∈ ℝ ) |
| 25 | 6 24 | pm2.61dane | ⊢ ( 𝐴 ∈ ℝ → ( arctan ‘ 𝐴 ) ∈ ℝ ) |