This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of 1 raised to an integer power. (Contributed by NM, 15-Dec-2005) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1exp | ⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex | ⊢ 1 ∈ V | |
| 2 | 1 | snid | ⊢ 1 ∈ { 1 } |
| 3 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | snssi | ⊢ ( 1 ∈ ℂ → { 1 } ⊆ ℂ ) | |
| 6 | 4 5 | ax-mp | ⊢ { 1 } ⊆ ℂ |
| 7 | elsni | ⊢ ( 𝑥 ∈ { 1 } → 𝑥 = 1 ) | |
| 8 | elsni | ⊢ ( 𝑦 ∈ { 1 } → 𝑦 = 1 ) | |
| 9 | oveq12 | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = ( 1 · 1 ) ) | |
| 10 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = 1 ) |
| 12 | 7 8 11 | syl2an | ⊢ ( ( 𝑥 ∈ { 1 } ∧ 𝑦 ∈ { 1 } ) → ( 𝑥 · 𝑦 ) = 1 ) |
| 13 | ovex | ⊢ ( 𝑥 · 𝑦 ) ∈ V | |
| 14 | 13 | elsn | ⊢ ( ( 𝑥 · 𝑦 ) ∈ { 1 } ↔ ( 𝑥 · 𝑦 ) = 1 ) |
| 15 | 12 14 | sylibr | ⊢ ( ( 𝑥 ∈ { 1 } ∧ 𝑦 ∈ { 1 } ) → ( 𝑥 · 𝑦 ) ∈ { 1 } ) |
| 16 | 7 | oveq2d | ⊢ ( 𝑥 ∈ { 1 } → ( 1 / 𝑥 ) = ( 1 / 1 ) ) |
| 17 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 18 | 16 17 | eqtrdi | ⊢ ( 𝑥 ∈ { 1 } → ( 1 / 𝑥 ) = 1 ) |
| 19 | ovex | ⊢ ( 1 / 𝑥 ) ∈ V | |
| 20 | 19 | elsn | ⊢ ( ( 1 / 𝑥 ) ∈ { 1 } ↔ ( 1 / 𝑥 ) = 1 ) |
| 21 | 18 20 | sylibr | ⊢ ( 𝑥 ∈ { 1 } → ( 1 / 𝑥 ) ∈ { 1 } ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑥 ∈ { 1 } ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ { 1 } ) |
| 23 | 6 15 2 22 | expcl2lem | ⊢ ( ( 1 ∈ { 1 } ∧ 1 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 1 ↑ 𝑁 ) ∈ { 1 } ) |
| 24 | 2 3 23 | mp3an12 | ⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) ∈ { 1 } ) |
| 25 | elsni | ⊢ ( ( 1 ↑ 𝑁 ) ∈ { 1 } → ( 1 ↑ 𝑁 ) = 1 ) | |
| 26 | 24 25 | syl | ⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |