This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent of 1 is _pi / 4 . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atan1 | ⊢ ( arctan ‘ 1 ) = ( π / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tan4thpi | ⊢ ( tan ‘ ( π / 4 ) ) = 1 | |
| 2 | 1 | fveq2i | ⊢ ( arctan ‘ ( tan ‘ ( π / 4 ) ) ) = ( arctan ‘ 1 ) |
| 3 | pire | ⊢ π ∈ ℝ | |
| 4 | 4nn | ⊢ 4 ∈ ℕ | |
| 5 | nndivre | ⊢ ( ( π ∈ ℝ ∧ 4 ∈ ℕ ) → ( π / 4 ) ∈ ℝ ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( π / 4 ) ∈ ℝ |
| 7 | 6 | recni | ⊢ ( π / 4 ) ∈ ℂ |
| 8 | rere | ⊢ ( ( π / 4 ) ∈ ℝ → ( ℜ ‘ ( π / 4 ) ) = ( π / 4 ) ) | |
| 9 | 6 8 | ax-mp | ⊢ ( ℜ ‘ ( π / 4 ) ) = ( π / 4 ) |
| 10 | pirp | ⊢ π ∈ ℝ+ | |
| 11 | rphalfcl | ⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) | |
| 12 | 10 11 | ax-mp | ⊢ ( π / 2 ) ∈ ℝ+ |
| 13 | rpgt0 | ⊢ ( ( π / 2 ) ∈ ℝ+ → 0 < ( π / 2 ) ) | |
| 14 | 12 13 | ax-mp | ⊢ 0 < ( π / 2 ) |
| 15 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 16 | lt0neg2 | ⊢ ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) |
| 18 | 14 17 | mpbi | ⊢ - ( π / 2 ) < 0 |
| 19 | nnrp | ⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) | |
| 20 | 4 19 | ax-mp | ⊢ 4 ∈ ℝ+ |
| 21 | rpdivcl | ⊢ ( ( π ∈ ℝ+ ∧ 4 ∈ ℝ+ ) → ( π / 4 ) ∈ ℝ+ ) | |
| 22 | 10 20 21 | mp2an | ⊢ ( π / 4 ) ∈ ℝ+ |
| 23 | rpgt0 | ⊢ ( ( π / 4 ) ∈ ℝ+ → 0 < ( π / 4 ) ) | |
| 24 | 22 23 | ax-mp | ⊢ 0 < ( π / 4 ) |
| 25 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 26 | 0re | ⊢ 0 ∈ ℝ | |
| 27 | 25 26 6 | lttri | ⊢ ( ( - ( π / 2 ) < 0 ∧ 0 < ( π / 4 ) ) → - ( π / 2 ) < ( π / 4 ) ) |
| 28 | 18 24 27 | mp2an | ⊢ - ( π / 2 ) < ( π / 4 ) |
| 29 | 3 | recni | ⊢ π ∈ ℂ |
| 30 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 31 | divdiv1 | ⊢ ( ( π ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( π / 2 ) / 2 ) = ( π / ( 2 · 2 ) ) ) | |
| 32 | 29 30 30 31 | mp3an | ⊢ ( ( π / 2 ) / 2 ) = ( π / ( 2 · 2 ) ) |
| 33 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 34 | 33 | oveq2i | ⊢ ( π / ( 2 · 2 ) ) = ( π / 4 ) |
| 35 | 32 34 | eqtri | ⊢ ( ( π / 2 ) / 2 ) = ( π / 4 ) |
| 36 | rphalflt | ⊢ ( ( π / 2 ) ∈ ℝ+ → ( ( π / 2 ) / 2 ) < ( π / 2 ) ) | |
| 37 | 12 36 | ax-mp | ⊢ ( ( π / 2 ) / 2 ) < ( π / 2 ) |
| 38 | 35 37 | eqbrtrri | ⊢ ( π / 4 ) < ( π / 2 ) |
| 39 | 25 | rexri | ⊢ - ( π / 2 ) ∈ ℝ* |
| 40 | 15 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 41 | elioo2 | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( π / 4 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( π / 4 ) ∈ ℝ ∧ - ( π / 2 ) < ( π / 4 ) ∧ ( π / 4 ) < ( π / 2 ) ) ) ) | |
| 42 | 39 40 41 | mp2an | ⊢ ( ( π / 4 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( π / 4 ) ∈ ℝ ∧ - ( π / 2 ) < ( π / 4 ) ∧ ( π / 4 ) < ( π / 2 ) ) ) |
| 43 | 6 28 38 42 | mpbir3an | ⊢ ( π / 4 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) |
| 44 | 9 43 | eqeltri | ⊢ ( ℜ ‘ ( π / 4 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) |
| 45 | atantan | ⊢ ( ( ( π / 4 ) ∈ ℂ ∧ ( ℜ ‘ ( π / 4 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arctan ‘ ( tan ‘ ( π / 4 ) ) ) = ( π / 4 ) ) | |
| 46 | 7 44 45 | mp2an | ⊢ ( arctan ‘ ( tan ‘ ( π / 4 ) ) ) = ( π / 4 ) |
| 47 | 2 46 | eqtr3i | ⊢ ( arctan ‘ 1 ) = ( π / 4 ) |