This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Leibniz formula for _pi . This version of leibpi looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leibpisum | ⊢ Σ 𝑛 ∈ ℕ0 ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( π / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | 0zd | ⊢ ( ⊤ → 0 ∈ ℤ ) | |
| 3 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ 𝑛 ) ) | |
| 4 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 2 · 𝑘 ) = ( 2 · 𝑛 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 6 | 3 5 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 7 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) | |
| 8 | ovex | ⊢ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ V | |
| 9 | 6 7 8 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ‘ 𝑛 ) = ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ‘ 𝑛 ) = ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 11 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 12 | reexpcl | ⊢ ( ( - 1 ∈ ℝ ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℝ ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝑛 ∈ ℕ0 → ( - 1 ↑ 𝑛 ) ∈ ℝ ) |
| 14 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 15 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) | |
| 16 | 14 15 | mpan | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 17 | nn0p1nn | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
| 19 | 13 18 | nndivred | ⊢ ( 𝑛 ∈ ℕ0 → ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 21 | 20 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 22 | 7 | leibpi | ⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ⇝ ( π / 4 ) |
| 23 | 22 | a1i | ⊢ ( ⊤ → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) ⇝ ( π / 4 ) ) |
| 24 | 1 2 10 21 23 | isumclim | ⊢ ( ⊤ → Σ 𝑛 ∈ ℕ0 ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( π / 4 ) ) |
| 25 | 24 | mptru | ⊢ Σ 𝑛 ∈ ℕ0 ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( π / 4 ) |