This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent is a continuous function. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | ||
| Assertion | atancn | ⊢ ( arctan ↾ 𝑆 ) ∈ ( 𝑆 –cn→ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | |
| 3 | ssid | ⊢ ℂ ⊆ ℂ | |
| 4 | atanf | ⊢ arctan : ( ℂ ∖ { - i , i } ) ⟶ ℂ | |
| 5 | 1 2 | atansssdm | ⊢ 𝑆 ⊆ dom arctan |
| 6 | 4 | fdmi | ⊢ dom arctan = ( ℂ ∖ { - i , i } ) |
| 7 | 5 6 | sseqtri | ⊢ 𝑆 ⊆ ( ℂ ∖ { - i , i } ) |
| 8 | fssres | ⊢ ( ( arctan : ( ℂ ∖ { - i , i } ) ⟶ ℂ ∧ 𝑆 ⊆ ( ℂ ∖ { - i , i } ) ) → ( arctan ↾ 𝑆 ) : 𝑆 ⟶ ℂ ) | |
| 9 | 4 7 8 | mp2an | ⊢ ( arctan ↾ 𝑆 ) : 𝑆 ⟶ ℂ |
| 10 | 2 | ssrab3 | ⊢ 𝑆 ⊆ ℂ |
| 11 | ovex | ⊢ ( 1 / ( 1 + ( 𝑥 ↑ 2 ) ) ) ∈ V | |
| 12 | 1 2 | dvatan | ⊢ ( ℂ D ( arctan ↾ 𝑆 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) |
| 13 | 11 12 | dmmpti | ⊢ dom ( ℂ D ( arctan ↾ 𝑆 ) ) = 𝑆 |
| 14 | dvcn | ⊢ ( ( ( ℂ ⊆ ℂ ∧ ( arctan ↾ 𝑆 ) : 𝑆 ⟶ ℂ ∧ 𝑆 ⊆ ℂ ) ∧ dom ( ℂ D ( arctan ↾ 𝑆 ) ) = 𝑆 ) → ( arctan ↾ 𝑆 ) ∈ ( 𝑆 –cn→ ℂ ) ) | |
| 15 | 13 14 | mpan2 | ⊢ ( ( ℂ ⊆ ℂ ∧ ( arctan ↾ 𝑆 ) : 𝑆 ⟶ ℂ ∧ 𝑆 ⊆ ℂ ) → ( arctan ↾ 𝑆 ) ∈ ( 𝑆 –cn→ ℂ ) ) |
| 16 | 3 9 10 15 | mp3an | ⊢ ( arctan ↾ 𝑆 ) ∈ ( 𝑆 –cn→ ℂ ) |