This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Leibniz formula for _pi . (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leibpi.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| leibpilem2.2 | ⊢ 𝐺 = ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) | ||
| leibpilem2.3 | ⊢ 𝐴 ∈ V | ||
| Assertion | leibpilem2 | ⊢ ( seq 0 ( + , 𝐹 ) ⇝ 𝐴 ↔ seq 0 ( + , 𝐺 ) ⇝ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leibpi.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 2 | leibpilem2.2 | ⊢ 𝐺 = ( 𝑘 ∈ ℕ0 ↦ if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) | |
| 3 | leibpilem2.3 | ⊢ 𝐴 ∈ V | |
| 4 | 2cn | ⊢ 2 ∈ ℂ | |
| 5 | nn0cn | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) | |
| 6 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 2 · 𝑛 ) ∈ ℂ ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℂ ) |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | pncan | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
| 11 | 10 | oveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 2 · 𝑛 ) / 2 ) ) |
| 12 | 2ne0 | ⊢ 2 ≠ 0 | |
| 13 | divcan3 | ⊢ ( ( 𝑛 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) | |
| 14 | 4 12 13 | mp3an23 | ⊢ ( 𝑛 ∈ ℂ → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
| 15 | 5 14 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
| 16 | 11 15 | eqtrd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = 𝑛 ) |
| 17 | 16 | oveq2d | ⊢ ( 𝑛 ∈ ℕ0 → ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) = ( - 1 ↑ 𝑛 ) ) |
| 18 | 17 | oveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 19 | 18 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 20 | 1 19 | eqtr4i | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 21 | seqeq3 | ⊢ ( 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) → seq 0 ( + , 𝐹 ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) | |
| 22 | 20 21 | ax-mp | ⊢ seq 0 ( + , 𝐹 ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 23 | 22 | breq1i | ⊢ ( seq 0 ( + , 𝐹 ) ⇝ 𝐴 ↔ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ⇝ 𝐴 ) |
| 24 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 25 | reexpcl | ⊢ ( ( - 1 ∈ ℝ ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℝ ) | |
| 26 | 24 25 | mpan | ⊢ ( 𝑛 ∈ ℕ0 → ( - 1 ↑ 𝑛 ) ∈ ℝ ) |
| 27 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 28 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) | |
| 29 | 27 28 | mpan | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 30 | nn0p1nn | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) | |
| 31 | 29 30 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
| 32 | 26 31 | nndivred | ⊢ ( 𝑛 ∈ ℕ0 → ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 33 | 32 | recnd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( - 1 ↑ 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 34 | 18 33 | eqeltrd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 35 | 34 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 36 | oveq1 | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝑘 − 1 ) = ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) ) | |
| 37 | 36 | oveq1d | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( 𝑘 − 1 ) / 2 ) = ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) |
| 38 | 37 | oveq2d | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) = ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ) |
| 39 | id | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → 𝑘 = ( ( 2 · 𝑛 ) + 1 ) ) | |
| 40 | 38 39 | oveq12d | ⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) = ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 41 | 35 40 | iserodd | ⊢ ( ⊤ → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ⇝ 𝐴 ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ 𝐴 ) ) |
| 42 | 41 | mptru | ⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ⇝ 𝐴 ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ 𝐴 ) |
| 43 | addlid | ⊢ ( 𝑛 ∈ ℂ → ( 0 + 𝑛 ) = 𝑛 ) | |
| 44 | 43 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ℂ ) → ( 0 + 𝑛 ) = 𝑛 ) |
| 45 | 0cnd | ⊢ ( ⊤ → 0 ∈ ℂ ) | |
| 46 | 1eluzge0 | ⊢ 1 ∈ ( ℤ≥ ‘ 0 ) | |
| 47 | 46 | a1i | ⊢ ( ⊤ → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
| 48 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 49 | 0cnd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ) → 0 ∈ ℂ ) | |
| 50 | ioran | ⊢ ( ¬ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ↔ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) | |
| 51 | leibpilem1 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( 𝑘 ∈ ℕ ∧ ( ( 𝑘 − 1 ) / 2 ) ∈ ℕ0 ) ) | |
| 52 | 51 | simprd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( 𝑘 − 1 ) / 2 ) ∈ ℕ0 ) |
| 53 | reexpcl | ⊢ ( ( - 1 ∈ ℝ ∧ ( ( 𝑘 − 1 ) / 2 ) ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) ∈ ℝ ) | |
| 54 | 24 52 53 | sylancr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) ∈ ℝ ) |
| 55 | 51 | simpld | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → 𝑘 ∈ ℕ ) |
| 56 | 54 55 | nndivred | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ∈ ℝ ) |
| 57 | 56 | recnd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ¬ 𝑘 = 0 ∧ ¬ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ∈ ℂ ) |
| 58 | 50 57 | sylan2b | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ¬ ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ∈ ℂ ) |
| 59 | 49 58 | ifclda | ⊢ ( 𝑘 ∈ ℕ0 → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ∈ ℂ ) |
| 60 | 2 59 | fmpti | ⊢ 𝐺 : ℕ0 ⟶ ℂ |
| 61 | 60 | ffvelcdmi | ⊢ ( 1 ∈ ℕ0 → ( 𝐺 ‘ 1 ) ∈ ℂ ) |
| 62 | 48 61 | mp1i | ⊢ ( ⊤ → ( 𝐺 ‘ 1 ) ∈ ℂ ) |
| 63 | simpr | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) ) → 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) ) | |
| 64 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 65 | 64 | oveq2i | ⊢ ( 0 ... ( 1 − 1 ) ) = ( 0 ... 0 ) |
| 66 | 63 65 | eleqtrdi | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) ) → 𝑛 ∈ ( 0 ... 0 ) ) |
| 67 | elfz1eq | ⊢ ( 𝑛 ∈ ( 0 ... 0 ) → 𝑛 = 0 ) | |
| 68 | 66 67 | syl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) ) → 𝑛 = 0 ) |
| 69 | 68 | fveq2d | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 0 ) ) |
| 70 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 71 | iftrue | ⊢ ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) = 0 ) | |
| 72 | 71 | orcs | ⊢ ( 𝑘 = 0 → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) = 0 ) |
| 73 | c0ex | ⊢ 0 ∈ V | |
| 74 | 72 2 73 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( 𝐺 ‘ 0 ) = 0 ) |
| 75 | 70 74 | ax-mp | ⊢ ( 𝐺 ‘ 0 ) = 0 |
| 76 | 69 75 | eqtrdi | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... ( 1 − 1 ) ) ) → ( 𝐺 ‘ 𝑛 ) = 0 ) |
| 77 | 44 45 47 62 76 | seqid | ⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ↾ ( ℤ≥ ‘ 1 ) ) = seq 1 ( + , 𝐺 ) ) |
| 78 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 79 | simpr | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 80 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 81 | 79 80 | eleqtrrdi | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑛 ∈ ℕ ) |
| 82 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 83 | 82 | neneqd | ⊢ ( 𝑛 ∈ ℕ → ¬ 𝑛 = 0 ) |
| 84 | biorf | ⊢ ( ¬ 𝑛 = 0 → ( 2 ∥ 𝑛 ↔ ( 𝑛 = 0 ∨ 2 ∥ 𝑛 ) ) ) | |
| 85 | 83 84 | syl | ⊢ ( 𝑛 ∈ ℕ → ( 2 ∥ 𝑛 ↔ ( 𝑛 = 0 ∨ 2 ∥ 𝑛 ) ) ) |
| 86 | 85 | ifbid | ⊢ ( 𝑛 ∈ ℕ → if ( 2 ∥ 𝑛 , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) = if ( ( 𝑛 = 0 ∨ 2 ∥ 𝑛 ) , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) ) |
| 87 | breq2 | ⊢ ( 𝑘 = 𝑛 → ( 2 ∥ 𝑘 ↔ 2 ∥ 𝑛 ) ) | |
| 88 | oveq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 1 ) = ( 𝑛 − 1 ) ) | |
| 89 | 88 | oveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝑘 − 1 ) / 2 ) = ( ( 𝑛 − 1 ) / 2 ) ) |
| 90 | 89 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) = ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) |
| 91 | id | ⊢ ( 𝑘 = 𝑛 → 𝑘 = 𝑛 ) | |
| 92 | 90 91 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) = ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) |
| 93 | 87 92 | ifbieq2d | ⊢ ( 𝑘 = 𝑛 → if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) = if ( 2 ∥ 𝑛 , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) ) |
| 94 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) | |
| 95 | ovex | ⊢ ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ∈ V | |
| 96 | 73 95 | ifex | ⊢ if ( 2 ∥ 𝑛 , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) ∈ V |
| 97 | 93 94 96 | fvmpt | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑛 ) = if ( 2 ∥ 𝑛 , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) ) |
| 98 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 99 | eqeq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 = 0 ↔ 𝑛 = 0 ) ) | |
| 100 | 99 87 | orbi12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) ↔ ( 𝑛 = 0 ∨ 2 ∥ 𝑛 ) ) ) |
| 101 | 100 92 | ifbieq2d | ⊢ ( 𝑘 = 𝑛 → if ( ( 𝑘 = 0 ∨ 2 ∥ 𝑘 ) , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) = if ( ( 𝑛 = 0 ∨ 2 ∥ 𝑛 ) , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) ) |
| 102 | 73 95 | ifex | ⊢ if ( ( 𝑛 = 0 ∨ 2 ∥ 𝑛 ) , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) ∈ V |
| 103 | 101 2 102 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝐺 ‘ 𝑛 ) = if ( ( 𝑛 = 0 ∨ 2 ∥ 𝑛 ) , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) ) |
| 104 | 98 103 | syl | ⊢ ( 𝑛 ∈ ℕ → ( 𝐺 ‘ 𝑛 ) = if ( ( 𝑛 = 0 ∨ 2 ∥ 𝑛 ) , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) / 𝑛 ) ) ) |
| 105 | 86 97 104 | 3eqtr4d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 106 | 81 105 | syl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) |
| 107 | 78 106 | seqfeq | ⊢ ( ⊤ → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) = seq 1 ( + , 𝐺 ) ) |
| 108 | 77 107 | eqtr4d | ⊢ ( ⊤ → ( seq 0 ( + , 𝐺 ) ↾ ( ℤ≥ ‘ 1 ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ) |
| 109 | 108 | mptru | ⊢ ( seq 0 ( + , 𝐺 ) ↾ ( ℤ≥ ‘ 1 ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) |
| 110 | 109 | breq1i | ⊢ ( ( seq 0 ( + , 𝐺 ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 𝐴 ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ 𝐴 ) |
| 111 | 1z | ⊢ 1 ∈ ℤ | |
| 112 | seqex | ⊢ seq 0 ( + , 𝐺 ) ∈ V | |
| 113 | climres | ⊢ ( ( 1 ∈ ℤ ∧ seq 0 ( + , 𝐺 ) ∈ V ) → ( ( seq 0 ( + , 𝐺 ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 𝐴 ↔ seq 0 ( + , 𝐺 ) ⇝ 𝐴 ) ) | |
| 114 | 111 112 113 | mp2an | ⊢ ( ( seq 0 ( + , 𝐺 ) ↾ ( ℤ≥ ‘ 1 ) ) ⇝ 𝐴 ↔ seq 0 ( + , 𝐺 ) ⇝ 𝐴 ) |
| 115 | 110 114 | bitr3i | ⊢ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) / 𝑘 ) ) ) ) ⇝ 𝐴 ↔ seq 0 ( + , 𝐺 ) ⇝ 𝐴 ) |
| 116 | 23 42 115 | 3bitri | ⊢ ( seq 0 ( + , 𝐹 ) ⇝ 𝐴 ↔ seq 0 ( + , 𝐺 ) ⇝ 𝐴 ) |