This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | ||
| Assertion | ressatans | ⊢ ℝ ⊆ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | |
| 3 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | resqcl | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 ↑ 2 ) ∈ ℝ ) | |
| 6 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑦 ↑ 2 ) ∈ ℝ ) → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝑦 ∈ ℝ → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ) |
| 8 | 7 | recnd | ⊢ ( 𝑦 ∈ ℝ → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℂ ) |
| 9 | 4 | a1i | ⊢ ( 𝑦 ∈ ℝ → 1 ∈ ℝ ) |
| 10 | 0lt1 | ⊢ 0 < 1 | |
| 11 | 10 | a1i | ⊢ ( 𝑦 ∈ ℝ → 0 < 1 ) |
| 12 | sqge0 | ⊢ ( 𝑦 ∈ ℝ → 0 ≤ ( 𝑦 ↑ 2 ) ) | |
| 13 | 9 5 11 12 | addgtge0d | ⊢ ( 𝑦 ∈ ℝ → 0 < ( 1 + ( 𝑦 ↑ 2 ) ) ) |
| 14 | 0re | ⊢ 0 ∈ ℝ | |
| 15 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ) → ( 0 < ( 1 + ( 𝑦 ↑ 2 ) ) ↔ ¬ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) ) | |
| 16 | 14 7 15 | sylancr | ⊢ ( 𝑦 ∈ ℝ → ( 0 < ( 1 + ( 𝑦 ↑ 2 ) ) ↔ ¬ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) ) |
| 17 | 13 16 | mpbid | ⊢ ( 𝑦 ∈ ℝ → ¬ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) |
| 18 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 19 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( 𝑦 ↑ 2 ) ) ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) ) ) | |
| 20 | 18 14 19 | mp2an | ⊢ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( 𝑦 ↑ 2 ) ) ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) ) |
| 21 | 20 | simp3bi | ⊢ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) → ( 1 + ( 𝑦 ↑ 2 ) ) ≤ 0 ) |
| 22 | 17 21 | nsyl | ⊢ ( 𝑦 ∈ ℝ → ¬ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) |
| 23 | 8 22 | eldifd | ⊢ ( 𝑦 ∈ ℝ → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 24 | 23 1 | eleqtrrdi | ⊢ ( 𝑦 ∈ ℝ → ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 ) |
| 25 | 24 | rgen | ⊢ ∀ 𝑦 ∈ ℝ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 |
| 26 | ssrab | ⊢ ( ℝ ⊆ { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } ↔ ( ℝ ⊆ ℂ ∧ ∀ 𝑦 ∈ ℝ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 ) ) | |
| 27 | 3 25 26 | mpbir2an | ⊢ ℝ ⊆ { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } |
| 28 | 27 2 | sseqtrri | ⊢ ℝ ⊆ 𝑆 |