This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The alternating series test. If G ( k ) is a decreasing sequence that converges to 0 , then sum_ k e. Z ( -u 1 ^ k ) x. G ( k ) is a convergent series. (Note that the first term is positive if M is even, and negative if M is odd. If the parity of your series does not match up with this, you will need to post-compose the series with multiplication by -u 1 using isermulc2 .) (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseralt.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iseralt.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| iseralt.3 | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) | ||
| iseralt.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) | ||
| iseralt.5 | ⊢ ( 𝜑 → 𝐺 ⇝ 0 ) | ||
| iseralt.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | iseralt | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseralt.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iseralt.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | iseralt.3 | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) | |
| 4 | iseralt.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐺 ‘ 𝑘 ) ) | |
| 5 | iseralt.5 | ⊢ ( 𝜑 → 𝐺 ⇝ 0 ) | |
| 6 | iseralt.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ) | |
| 7 | seqex | ⊢ seq 𝑀 ( + , 𝐹 ) ∈ V | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ V ) |
| 9 | climrel | ⊢ Rel ⇝ | |
| 10 | 9 | brrelex1i | ⊢ ( 𝐺 ⇝ 0 → 𝐺 ∈ V ) |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 12 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑛 ) ) | |
| 13 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 14 | 13 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℂ ) |
| 15 | 1 2 11 12 14 | clim0c | ⊢ ( 𝜑 → ( 𝐺 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 ) ) |
| 16 | 5 15 | mpbid | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 ) |
| 17 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 18 | 17 1 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 19 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 20 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 21 | 18 19 20 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 22 | peano2uz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 23 | 2fveq3 | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) = ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) | |
| 24 | 23 | breq1d | ⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) ) |
| 25 | 24 | rspcv | ⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) ) |
| 26 | 21 22 25 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) ) |
| 27 | eluzelz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑛 ∈ ℤ ) | |
| 28 | 27 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ ℤ ) |
| 29 | 28 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ ℂ ) |
| 30 | 19 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 31 | 30 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℤ ) |
| 32 | 31 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℂ ) |
| 33 | 29 32 | subcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 𝑗 ) ∈ ℂ ) |
| 34 | 2cnd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 2 ∈ ℂ ) | |
| 35 | 2ne0 | ⊢ 2 ≠ 0 | |
| 36 | 35 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 2 ≠ 0 ) |
| 37 | 33 34 36 | divcan2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) = ( 𝑛 − 𝑗 ) ) |
| 38 | 37 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) = ( 𝑗 + ( 𝑛 − 𝑗 ) ) ) |
| 39 | 32 29 | pncan3d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( 𝑛 − 𝑗 ) ) = 𝑛 ) |
| 40 | 38 39 | eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 = ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → 𝑛 = ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) |
| 42 | 41 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) ) |
| 43 | 42 | fvoveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 44 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → 𝜑 ) | |
| 45 | simpl | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑗 ∈ 𝑍 ) | |
| 46 | 45 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → 𝑗 ∈ 𝑍 ) |
| 47 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) | |
| 48 | 28 31 | zsubcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 𝑗 ) ∈ ℤ ) |
| 49 | 48 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 𝑗 ) ∈ ℝ ) |
| 50 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 51 | 50 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 2 ∈ ℝ+ ) |
| 52 | eluzle | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑗 ≤ 𝑛 ) | |
| 53 | 52 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ≤ 𝑛 ) |
| 54 | 28 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 ∈ ℝ ) |
| 55 | 31 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℝ ) |
| 56 | 54 55 | subge0d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 0 ≤ ( 𝑛 − 𝑗 ) ↔ 𝑗 ≤ 𝑛 ) ) |
| 57 | 53 56 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( 𝑛 − 𝑗 ) ) |
| 58 | 49 51 57 | divge0d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( ( 𝑛 − 𝑗 ) / 2 ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → 0 ≤ ( ( 𝑛 − 𝑗 ) / 2 ) ) |
| 60 | elnn0z | ⊢ ( ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℕ0 ↔ ( ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑛 − 𝑗 ) / 2 ) ) ) | |
| 61 | 47 59 60 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℕ0 ) |
| 62 | 1 2 3 4 5 6 | iseraltlem3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℕ0 ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 63 | 62 | simpld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 64 | 44 46 61 63 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( 𝑛 − 𝑗 ) / 2 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 65 | 43 64 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 66 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 67 | 66 | oveq2i | ⊢ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − ( 2 / 2 ) ) = ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) |
| 68 | peano2cn | ⊢ ( ( 𝑛 − 𝑗 ) ∈ ℂ → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℂ ) | |
| 69 | 33 68 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℂ ) |
| 70 | 69 34 34 36 | divsubdird | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) − 2 ) / 2 ) = ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − ( 2 / 2 ) ) ) |
| 71 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 72 | 71 | oveq2i | ⊢ ( ( ( 𝑛 − 𝑗 ) + 1 ) − 2 ) = ( ( ( 𝑛 − 𝑗 ) + 1 ) − ( 1 + 1 ) ) |
| 73 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 74 | 73 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 1 ∈ ℂ ) |
| 75 | 33 74 74 | pnpcan2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) − ( 1 + 1 ) ) = ( ( 𝑛 − 𝑗 ) − 1 ) ) |
| 76 | 72 75 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) − 2 ) = ( ( 𝑛 − 𝑗 ) − 1 ) ) |
| 77 | 76 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) − 2 ) / 2 ) = ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) |
| 78 | 70 77 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − ( 2 / 2 ) ) = ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) |
| 79 | 67 78 | eqtr3id | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) = ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) |
| 80 | 79 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) = ( 2 · ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) ) |
| 81 | subcl | ⊢ ( ( ( 𝑛 − 𝑗 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 𝑗 ) − 1 ) ∈ ℂ ) | |
| 82 | 33 73 81 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) − 1 ) ∈ ℂ ) |
| 83 | 82 34 36 | divcan2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 2 · ( ( ( 𝑛 − 𝑗 ) − 1 ) / 2 ) ) = ( ( 𝑛 − 𝑗 ) − 1 ) ) |
| 84 | 29 32 74 | sub32d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) − 1 ) = ( ( 𝑛 − 1 ) − 𝑗 ) ) |
| 85 | 80 83 84 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) = ( ( 𝑛 − 1 ) − 𝑗 ) ) |
| 86 | 85 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) = ( 𝑗 + ( ( 𝑛 − 1 ) − 𝑗 ) ) ) |
| 87 | subcl | ⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑛 − 1 ) ∈ ℂ ) | |
| 88 | 29 73 87 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 1 ) ∈ ℂ ) |
| 89 | 32 88 | pncan3d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( ( 𝑛 − 1 ) − 𝑗 ) ) = ( 𝑛 − 1 ) ) |
| 90 | 86 89 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) = ( 𝑛 − 1 ) ) |
| 91 | 90 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) = ( ( 𝑛 − 1 ) + 1 ) ) |
| 92 | npcan | ⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) | |
| 93 | 29 73 92 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 94 | 91 93 | eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑛 = ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) |
| 95 | 94 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → 𝑛 = ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) |
| 96 | 95 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) ) |
| 97 | 96 | fvoveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 98 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → 𝜑 ) | |
| 99 | 45 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → 𝑗 ∈ 𝑍 ) |
| 100 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) | |
| 101 | uznn0sub | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑛 − 𝑗 ) ∈ ℕ0 ) | |
| 102 | 101 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑛 − 𝑗 ) ∈ ℕ0 ) |
| 103 | nn0p1nn | ⊢ ( ( 𝑛 − 𝑗 ) ∈ ℕ0 → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℕ ) | |
| 104 | 102 103 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℕ ) |
| 105 | 104 | nnrpd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑛 − 𝑗 ) + 1 ) ∈ ℝ+ ) |
| 106 | 105 | rphalfcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℝ+ ) |
| 107 | 106 | rpgt0d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 < ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ) |
| 108 | 107 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → 0 < ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ) |
| 109 | elnnz | ⊢ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℕ ↔ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ∧ 0 < ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ) ) | |
| 110 | 100 108 109 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℕ ) |
| 111 | nnm1nn0 | ⊢ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℕ → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ∈ ℕ0 ) | |
| 112 | 110 111 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ∈ ℕ0 ) |
| 113 | 1 2 3 4 5 6 | iseraltlem3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ∈ ℕ0 ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 114 | 113 | simprd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ∧ ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ∈ ℕ0 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 115 | 98 99 112 114 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( ( 𝑗 + ( 2 · ( ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) − 1 ) ) ) + 1 ) ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 116 | 97 115 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 117 | zeo | ⊢ ( ( 𝑛 − 𝑗 ) ∈ ℤ → ( ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ∨ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) ) | |
| 118 | 48 117 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑛 − 𝑗 ) / 2 ) ∈ ℤ ∨ ( ( ( 𝑛 − 𝑗 ) + 1 ) / 2 ) ∈ ℤ ) ) |
| 119 | 65 116 118 | mpjaodan | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 120 | 1 | peano2uzs | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝑗 + 1 ) ∈ 𝑍 ) |
| 121 | 120 | adantr | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑗 + 1 ) ∈ 𝑍 ) |
| 122 | ffvelcdm | ⊢ ( ( 𝐺 : 𝑍 ⟶ ℝ ∧ ( 𝑗 + 1 ) ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) | |
| 123 | 3 121 122 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐺 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 124 | 1 2 3 4 5 | iseraltlem1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ 𝑍 ) → 0 ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 125 | 121 124 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 0 ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 126 | 123 125 | absidd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 127 | 119 126 | breqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 128 | 127 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ) |
| 129 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 130 | 129 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 1 ∈ ℝ ) |
| 131 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 132 | 131 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 1 ≠ 0 ) |
| 133 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 134 | 133 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 135 | 134 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
| 136 | 130 132 135 | reexpclzd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( - 1 ↑ 𝑘 ) ∈ ℝ ) |
| 137 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 138 | 136 137 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( - 1 ↑ 𝑘 ) · ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 139 | 6 138 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 140 | 1 2 139 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
| 141 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
| 142 | ffvelcdm | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) | |
| 143 | 140 141 142 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 144 | ffvelcdm | ⊢ ( ( seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) | |
| 145 | 140 45 144 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 146 | 143 145 | resubcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ∈ ℝ ) |
| 147 | 146 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ∈ ℂ ) |
| 148 | 147 | abscld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 149 | 148 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 150 | 126 123 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 151 | 150 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 152 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 153 | 152 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑥 ∈ ℝ ) |
| 154 | lelttr | ⊢ ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∧ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) | |
| 155 | 149 151 153 154 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ≤ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) ∧ ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 156 | 128 155 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 157 | 140 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
| 158 | 157 141 142 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 159 | 156 158 | jctild | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 160 | 159 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 161 | 160 | ralrimdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ( abs ‘ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) < 𝑥 → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 162 | 26 161 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 163 | 162 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 164 | 163 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐺 ‘ 𝑛 ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 165 | 16 164 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 166 | 1 8 165 | caurcvg2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |