This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Taylor series for arctan ( A ) . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atantayl2.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) ) | |
| Assertion | atantayl2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , 𝐹 ) ⇝ ( arctan ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atantayl2.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | 2 | negcli | ⊢ - i ∈ ℂ |
| 4 | 3 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → - i ∈ ℂ ) |
| 5 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 𝑛 ∈ ℕ0 ) |
| 7 | 4 6 | expcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( - i ↑ 𝑛 ) ∈ ℂ ) |
| 8 | sqneg | ⊢ ( i ∈ ℂ → ( - i ↑ 2 ) = ( i ↑ 2 ) ) | |
| 9 | 2 8 | ax-mp | ⊢ ( - i ↑ 2 ) = ( i ↑ 2 ) |
| 10 | 9 | oveq1i | ⊢ ( ( - i ↑ 2 ) ↑ ( 𝑛 / 2 ) ) = ( ( i ↑ 2 ) ↑ ( 𝑛 / 2 ) ) |
| 11 | ine0 | ⊢ i ≠ 0 | |
| 12 | 2 11 | negne0i | ⊢ - i ≠ 0 |
| 13 | 12 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → - i ≠ 0 ) |
| 14 | 2z | ⊢ 2 ∈ ℤ | |
| 15 | 14 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 2 ∈ ℤ ) |
| 16 | 2ne0 | ⊢ 2 ≠ 0 | |
| 17 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 19 | dvdsval2 | ⊢ ( ( 2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑛 ∈ ℤ ) → ( 2 ∥ 𝑛 ↔ ( 𝑛 / 2 ) ∈ ℤ ) ) | |
| 20 | 14 16 18 19 | mp3an12i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( 2 ∥ 𝑛 ↔ ( 𝑛 / 2 ) ∈ ℤ ) ) |
| 21 | 20 | biimpa | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( 𝑛 / 2 ) ∈ ℤ ) |
| 22 | expmulz | ⊢ ( ( ( - i ∈ ℂ ∧ - i ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ ( 𝑛 / 2 ) ∈ ℤ ) ) → ( - i ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( - i ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) | |
| 23 | 4 13 15 21 22 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( - i ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( - i ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
| 24 | 2 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → i ∈ ℂ ) |
| 25 | 11 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → i ≠ 0 ) |
| 26 | expmulz | ⊢ ( ( ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ ( 𝑛 / 2 ) ∈ ℤ ) ) → ( i ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( i ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) | |
| 27 | 24 25 15 21 26 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( i ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( ( i ↑ 2 ) ↑ ( 𝑛 / 2 ) ) ) |
| 28 | 10 23 27 | 3eqtr4a | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( - i ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( i ↑ ( 2 · ( 𝑛 / 2 ) ) ) ) |
| 29 | nncn | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) | |
| 30 | 29 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 𝑛 ∈ ℂ ) |
| 31 | 2cnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 2 ∈ ℂ ) | |
| 32 | 16 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 2 ≠ 0 ) |
| 33 | 30 31 32 | divcan2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( 2 · ( 𝑛 / 2 ) ) = 𝑛 ) |
| 34 | 33 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( - i ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( - i ↑ 𝑛 ) ) |
| 35 | 33 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( i ↑ ( 2 · ( 𝑛 / 2 ) ) ) = ( i ↑ 𝑛 ) ) |
| 36 | 28 34 35 | 3eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( - i ↑ 𝑛 ) = ( i ↑ 𝑛 ) ) |
| 37 | 7 36 | subeq0bd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) = 0 ) |
| 38 | 37 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) = ( i · 0 ) ) |
| 39 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 40 | 38 39 | eqtrdi | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) = 0 ) |
| 41 | 40 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) = ( 0 / 2 ) ) |
| 42 | 2cn | ⊢ 2 ∈ ℂ | |
| 43 | 42 16 | div0i | ⊢ ( 0 / 2 ) = 0 |
| 44 | 41 43 | eqtrdi | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) = 0 ) |
| 45 | 44 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) = ( 0 · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 46 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 𝐴 ∈ ℂ ) | |
| 47 | 46 6 | expcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( 𝐴 ↑ 𝑛 ) ∈ ℂ ) |
| 48 | nnne0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) | |
| 49 | 48 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 𝑛 ≠ 0 ) |
| 50 | 47 30 49 | divcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 51 | 50 | mul02d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → ( 0 · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) = 0 ) |
| 52 | 45 51 | eqtr2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ 2 ∥ 𝑛 ) → 0 = ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 53 | 2cnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → 2 ∈ ℂ ) | |
| 54 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 55 | 54 | negcli | ⊢ - 1 ∈ ℂ |
| 56 | 55 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → - 1 ∈ ℂ ) |
| 57 | neg1ne0 | ⊢ - 1 ≠ 0 | |
| 58 | 57 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → - 1 ≠ 0 ) |
| 59 | 29 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → 𝑛 ∈ ℂ ) |
| 60 | peano2cn | ⊢ ( 𝑛 ∈ ℂ → ( 𝑛 + 1 ) ∈ ℂ ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( 𝑛 + 1 ) ∈ ℂ ) |
| 62 | 16 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → 2 ≠ 0 ) |
| 63 | 61 53 53 62 | divsubdird | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( ( 𝑛 + 1 ) − 2 ) / 2 ) = ( ( ( 𝑛 + 1 ) / 2 ) − ( 2 / 2 ) ) ) |
| 64 | 2div2e1 | ⊢ ( 2 / 2 ) = 1 | |
| 65 | 64 | oveq2i | ⊢ ( ( ( 𝑛 + 1 ) / 2 ) − ( 2 / 2 ) ) = ( ( ( 𝑛 + 1 ) / 2 ) − 1 ) |
| 66 | 63 65 | eqtrdi | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( ( 𝑛 + 1 ) − 2 ) / 2 ) = ( ( ( 𝑛 + 1 ) / 2 ) − 1 ) ) |
| 67 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 68 | 67 | oveq2i | ⊢ ( ( 𝑛 + 1 ) − 2 ) = ( ( 𝑛 + 1 ) − ( 1 + 1 ) ) |
| 69 | 54 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → 1 ∈ ℂ ) |
| 70 | 59 69 69 | pnpcan2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( 𝑛 + 1 ) − ( 1 + 1 ) ) = ( 𝑛 − 1 ) ) |
| 71 | 68 70 | eqtrid | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( 𝑛 + 1 ) − 2 ) = ( 𝑛 − 1 ) ) |
| 72 | 71 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( ( 𝑛 + 1 ) − 2 ) / 2 ) = ( ( 𝑛 − 1 ) / 2 ) ) |
| 73 | 66 72 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( ( 𝑛 + 1 ) / 2 ) − 1 ) = ( ( 𝑛 − 1 ) / 2 ) ) |
| 74 | 20 | notbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 ↔ ¬ ( 𝑛 / 2 ) ∈ ℤ ) ) |
| 75 | zeo | ⊢ ( 𝑛 ∈ ℤ → ( ( 𝑛 / 2 ) ∈ ℤ ∨ ( ( 𝑛 + 1 ) / 2 ) ∈ ℤ ) ) | |
| 76 | 18 75 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 / 2 ) ∈ ℤ ∨ ( ( 𝑛 + 1 ) / 2 ) ∈ ℤ ) ) |
| 77 | 76 | ord | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ¬ ( 𝑛 / 2 ) ∈ ℤ → ( ( 𝑛 + 1 ) / 2 ) ∈ ℤ ) ) |
| 78 | 74 77 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → ( ¬ 2 ∥ 𝑛 → ( ( 𝑛 + 1 ) / 2 ) ∈ ℤ ) ) |
| 79 | 78 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( 𝑛 + 1 ) / 2 ) ∈ ℤ ) |
| 80 | peano2zm | ⊢ ( ( ( 𝑛 + 1 ) / 2 ) ∈ ℤ → ( ( ( 𝑛 + 1 ) / 2 ) − 1 ) ∈ ℤ ) | |
| 81 | 79 80 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( ( 𝑛 + 1 ) / 2 ) − 1 ) ∈ ℤ ) |
| 82 | 73 81 | eqeltrrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( 𝑛 − 1 ) / 2 ) ∈ ℤ ) |
| 83 | 56 58 82 | expclzd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) ∈ ℂ ) |
| 84 | 83 | 2timesd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( 2 · ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) = ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) ) |
| 85 | subcl | ⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑛 − 1 ) ∈ ℂ ) | |
| 86 | 59 54 85 | sylancl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( 𝑛 − 1 ) ∈ ℂ ) |
| 87 | 86 53 62 | divcan2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( 2 · ( ( 𝑛 − 1 ) / 2 ) ) = ( 𝑛 − 1 ) ) |
| 88 | 87 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - i ↑ ( 2 · ( ( 𝑛 − 1 ) / 2 ) ) ) = ( - i ↑ ( 𝑛 − 1 ) ) ) |
| 89 | 3 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → - i ∈ ℂ ) |
| 90 | 12 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → - i ≠ 0 ) |
| 91 | 17 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → 𝑛 ∈ ℤ ) |
| 92 | 89 90 91 | expm1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - i ↑ ( 𝑛 − 1 ) ) = ( ( - i ↑ 𝑛 ) / - i ) ) |
| 93 | 88 92 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - i ↑ ( 2 · ( ( 𝑛 − 1 ) / 2 ) ) ) = ( ( - i ↑ 𝑛 ) / - i ) ) |
| 94 | 14 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → 2 ∈ ℤ ) |
| 95 | expmulz | ⊢ ( ( ( - i ∈ ℂ ∧ - i ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ ( ( 𝑛 − 1 ) / 2 ) ∈ ℤ ) ) → ( - i ↑ ( 2 · ( ( 𝑛 − 1 ) / 2 ) ) ) = ( ( - i ↑ 2 ) ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) | |
| 96 | 89 90 94 82 95 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - i ↑ ( 2 · ( ( 𝑛 − 1 ) / 2 ) ) ) = ( ( - i ↑ 2 ) ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) |
| 97 | 5 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → 𝑛 ∈ ℕ0 ) |
| 98 | expcl | ⊢ ( ( - i ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( - i ↑ 𝑛 ) ∈ ℂ ) | |
| 99 | 3 97 98 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - i ↑ 𝑛 ) ∈ ℂ ) |
| 100 | 99 89 90 | divrec2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( - i ↑ 𝑛 ) / - i ) = ( ( 1 / - i ) · ( - i ↑ 𝑛 ) ) ) |
| 101 | 93 96 100 | 3eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( - i ↑ 2 ) ↑ ( ( 𝑛 − 1 ) / 2 ) ) = ( ( 1 / - i ) · ( - i ↑ 𝑛 ) ) ) |
| 102 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 103 | 9 102 | eqtri | ⊢ ( - i ↑ 2 ) = - 1 |
| 104 | 103 | oveq1i | ⊢ ( ( - i ↑ 2 ) ↑ ( ( 𝑛 − 1 ) / 2 ) ) = ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) |
| 105 | irec | ⊢ ( 1 / i ) = - i | |
| 106 | 105 | negeqi | ⊢ - ( 1 / i ) = - - i |
| 107 | divneg2 | ⊢ ( ( 1 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → - ( 1 / i ) = ( 1 / - i ) ) | |
| 108 | 54 2 11 107 | mp3an | ⊢ - ( 1 / i ) = ( 1 / - i ) |
| 109 | 2 | negnegi | ⊢ - - i = i |
| 110 | 106 108 109 | 3eqtr3i | ⊢ ( 1 / - i ) = i |
| 111 | 110 | oveq1i | ⊢ ( ( 1 / - i ) · ( - i ↑ 𝑛 ) ) = ( i · ( - i ↑ 𝑛 ) ) |
| 112 | 101 104 111 | 3eqtr3g | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) = ( i · ( - i ↑ 𝑛 ) ) ) |
| 113 | 87 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( i ↑ ( 2 · ( ( 𝑛 − 1 ) / 2 ) ) ) = ( i ↑ ( 𝑛 − 1 ) ) ) |
| 114 | 2 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → i ∈ ℂ ) |
| 115 | 11 | a1i | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → i ≠ 0 ) |
| 116 | 114 115 91 | expm1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( i ↑ ( 𝑛 − 1 ) ) = ( ( i ↑ 𝑛 ) / i ) ) |
| 117 | 113 116 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( i ↑ ( 2 · ( ( 𝑛 − 1 ) / 2 ) ) ) = ( ( i ↑ 𝑛 ) / i ) ) |
| 118 | expmulz | ⊢ ( ( ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( 2 ∈ ℤ ∧ ( ( 𝑛 − 1 ) / 2 ) ∈ ℤ ) ) → ( i ↑ ( 2 · ( ( 𝑛 − 1 ) / 2 ) ) ) = ( ( i ↑ 2 ) ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) | |
| 119 | 114 115 94 82 118 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( i ↑ ( 2 · ( ( 𝑛 − 1 ) / 2 ) ) ) = ( ( i ↑ 2 ) ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) |
| 120 | expcl | ⊢ ( ( i ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( i ↑ 𝑛 ) ∈ ℂ ) | |
| 121 | 2 97 120 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( i ↑ 𝑛 ) ∈ ℂ ) |
| 122 | 121 114 115 | divrec2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( i ↑ 𝑛 ) / i ) = ( ( 1 / i ) · ( i ↑ 𝑛 ) ) ) |
| 123 | 117 119 122 | 3eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( i ↑ 2 ) ↑ ( ( 𝑛 − 1 ) / 2 ) ) = ( ( 1 / i ) · ( i ↑ 𝑛 ) ) ) |
| 124 | 102 | oveq1i | ⊢ ( ( i ↑ 2 ) ↑ ( ( 𝑛 − 1 ) / 2 ) ) = ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) |
| 125 | 105 | oveq1i | ⊢ ( ( 1 / i ) · ( i ↑ 𝑛 ) ) = ( - i · ( i ↑ 𝑛 ) ) |
| 126 | 123 124 125 | 3eqtr3g | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) = ( - i · ( i ↑ 𝑛 ) ) ) |
| 127 | mulneg1 | ⊢ ( ( i ∈ ℂ ∧ ( i ↑ 𝑛 ) ∈ ℂ ) → ( - i · ( i ↑ 𝑛 ) ) = - ( i · ( i ↑ 𝑛 ) ) ) | |
| 128 | 2 121 127 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - i · ( i ↑ 𝑛 ) ) = - ( i · ( i ↑ 𝑛 ) ) ) |
| 129 | 126 128 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) = - ( i · ( i ↑ 𝑛 ) ) ) |
| 130 | 112 129 | oveq12d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) = ( ( i · ( - i ↑ 𝑛 ) ) + - ( i · ( i ↑ 𝑛 ) ) ) ) |
| 131 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( - i ↑ 𝑛 ) ∈ ℂ ) → ( i · ( - i ↑ 𝑛 ) ) ∈ ℂ ) | |
| 132 | 2 99 131 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( i · ( - i ↑ 𝑛 ) ) ∈ ℂ ) |
| 133 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( i ↑ 𝑛 ) ∈ ℂ ) → ( i · ( i ↑ 𝑛 ) ) ∈ ℂ ) | |
| 134 | 2 121 133 | sylancr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( i · ( i ↑ 𝑛 ) ) ∈ ℂ ) |
| 135 | 132 134 | negsubd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( i · ( - i ↑ 𝑛 ) ) + - ( i · ( i ↑ 𝑛 ) ) ) = ( ( i · ( - i ↑ 𝑛 ) ) − ( i · ( i ↑ 𝑛 ) ) ) ) |
| 136 | 114 99 121 | subdid | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) = ( ( i · ( - i ↑ 𝑛 ) ) − ( i · ( i ↑ 𝑛 ) ) ) ) |
| 137 | 135 136 | eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( i · ( - i ↑ 𝑛 ) ) + - ( i · ( i ↑ 𝑛 ) ) ) = ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) ) |
| 138 | 84 130 137 | 3eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( 2 · ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) = ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) ) |
| 139 | 53 83 62 138 | mvllmuld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) = ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) ) |
| 140 | 139 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) ∧ ¬ 2 ∥ 𝑛 ) → ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) = ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 141 | 52 140 | ifeqda | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ ) → if ( 2 ∥ 𝑛 , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) = ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) |
| 142 | 141 | mpteq2dva | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝑛 ∈ ℕ ↦ if ( 2 ∥ 𝑛 , 0 , ( ( - 1 ↑ ( ( 𝑛 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) ) |
| 143 | 1 142 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) ) |
| 144 | 143 | seqeq3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , 𝐹 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) ) ) |
| 145 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) | |
| 146 | 145 | atantayl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( ( ( i · ( ( - i ↑ 𝑛 ) − ( i ↑ 𝑛 ) ) ) / 2 ) · ( ( 𝐴 ↑ 𝑛 ) / 𝑛 ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ) |
| 147 | 144 146 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , 𝐹 ) ⇝ ( arctan ‘ 𝐴 ) ) |