This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eulerth . (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eulerth.1 | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ) | |
| eulerth.2 | ⊢ 𝑆 = { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } | ||
| eulerth.3 | ⊢ 𝑇 = ( 1 ... ( ϕ ‘ 𝑁 ) ) | ||
| eulerth.4 | ⊢ ( 𝜑 → 𝐹 : 𝑇 –1-1-onto→ 𝑆 ) | ||
| eulerth.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑇 ↦ ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ) | ||
| Assertion | eulerthlem2 | ⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerth.1 | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ) | |
| 2 | eulerth.2 | ⊢ 𝑆 = { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } | |
| 3 | eulerth.3 | ⊢ 𝑇 = ( 1 ... ( ϕ ‘ 𝑁 ) ) | |
| 4 | eulerth.4 | ⊢ ( 𝜑 → 𝐹 : 𝑇 –1-1-onto→ 𝑆 ) | |
| 5 | eulerth.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑇 ↦ ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ) | |
| 6 | 1 | simp1d | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 | 6 | phicld | ⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
| 8 | 7 | nnred | ⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℝ ) |
| 9 | 8 | leidd | ⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) |
| 10 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
| 11 | breq1 | ⊢ ( 𝑥 = 1 → ( 𝑥 ≤ ( ϕ ‘ 𝑁 ) ↔ 1 ≤ ( ϕ ‘ 𝑁 ) ) ) | |
| 12 | 11 | anbi2d | ⊢ ( 𝑥 = 1 → ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) ↔ ( 𝜑 ∧ 1 ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = 1 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 1 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 1 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) | |
| 15 | 13 14 | oveq12d | ⊢ ( 𝑥 = 1 → ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝑥 = 1 → ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) ) |
| 17 | fveq2 | ⊢ ( 𝑥 = 1 → ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐺 ) ‘ 1 ) ) | |
| 18 | 17 | oveq1d | ⊢ ( 𝑥 = 1 → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ) ) |
| 20 | 14 | oveq2d | ⊢ ( 𝑥 = 1 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 21 | 20 | eqeq1d | ⊢ ( 𝑥 = 1 → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ↔ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) |
| 22 | 19 21 | anbi12d | ⊢ ( 𝑥 = 1 → ( ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ↔ ( ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) ) |
| 23 | 12 22 | imbi12d | ⊢ ( 𝑥 = 1 → ( ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ) ↔ ( ( 𝜑 ∧ 1 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) ) ) |
| 24 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≤ ( ϕ ‘ 𝑁 ) ↔ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) | |
| 25 | 24 | anbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 26 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑧 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) | |
| 28 | 26 27 | oveq12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ) |
| 29 | 28 | oveq1d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 30 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) | |
| 31 | 30 | oveq1d | ⊢ ( 𝑥 = 𝑧 → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ) |
| 32 | 29 31 | eqeq12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ) ) |
| 33 | 27 | oveq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ) |
| 34 | 33 | eqeq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ↔ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) |
| 35 | 32 34 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ↔ ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) ) |
| 36 | 25 35 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ) ↔ ( ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) ) ) |
| 37 | breq1 | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝑥 ≤ ( ϕ ‘ 𝑁 ) ↔ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) | |
| 38 | 37 | anbi2d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) ↔ ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 39 | oveq2 | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑧 + 1 ) ) ) | |
| 40 | fveq2 | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) | |
| 41 | 39 40 | oveq12d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) ) |
| 42 | 41 | oveq1d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 43 | fveq2 | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) ) | |
| 44 | 43 | oveq1d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) |
| 45 | 42 44 | eqeq12d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) ) |
| 46 | 40 | oveq2d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) ) |
| 47 | 46 | eqeq1d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ↔ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) |
| 48 | 45 47 | anbi12d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ↔ ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) |
| 49 | 38 48 | imbi12d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ) ↔ ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) ) |
| 50 | breq1 | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( 𝑥 ≤ ( ϕ ‘ 𝑁 ) ↔ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) ) | |
| 51 | 50 | anbi2d | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) ↔ ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 52 | oveq2 | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ) | |
| 53 | fveq2 | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) | |
| 54 | 52 53 | oveq12d | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) |
| 55 | 54 | oveq1d | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) ) |
| 56 | fveq2 | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) | |
| 57 | 56 | oveq1d | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ) |
| 58 | 55 57 | eqeq12d | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ) ) |
| 59 | 53 | oveq2d | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) |
| 60 | 59 | eqeq1d | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ↔ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) |
| 61 | 58 60 | anbi12d | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ↔ ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) ) |
| 62 | 51 61 | imbi12d | ⊢ ( 𝑥 = ( ϕ ‘ 𝑁 ) → ( ( ( 𝜑 ∧ 𝑥 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑥 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑥 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = 1 ) ) ↔ ( ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) ) ) |
| 63 | 1 | simp2d | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 64 | f1of | ⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 → 𝐹 : 𝑇 ⟶ 𝑆 ) | |
| 65 | 4 64 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ 𝑆 ) |
| 66 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 67 | 7 66 | eleqtrdi | ⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 68 | eluzfz1 | ⊢ ( ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | |
| 69 | 67 68 | syl | ⊢ ( 𝜑 → 1 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 70 | 69 3 | eleqtrrdi | ⊢ ( 𝜑 → 1 ∈ 𝑇 ) |
| 71 | 65 70 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝑆 ) |
| 72 | oveq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 1 ) → ( 𝑦 gcd 𝑁 ) = ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) ) | |
| 73 | 72 | eqeq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 1 ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) = 1 ) ) |
| 74 | 73 2 | elrab2 | ⊢ ( ( 𝐹 ‘ 1 ) ∈ 𝑆 ↔ ( ( 𝐹 ‘ 1 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) = 1 ) ) |
| 75 | 71 74 | sylib | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) = 1 ) ) |
| 76 | 75 | simpld | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 77 | elfzoelz | ⊢ ( ( 𝐹 ‘ 1 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 1 ) ∈ ℤ ) | |
| 78 | 76 77 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ ℤ ) |
| 79 | 63 78 | zmulcld | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐹 ‘ 1 ) ) ∈ ℤ ) |
| 80 | 79 | zred | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐹 ‘ 1 ) ) ∈ ℝ ) |
| 81 | 6 | nnrpd | ⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 82 | modabs2 | ⊢ ( ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) | |
| 83 | 80 81 82 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 84 | 1z | ⊢ 1 ∈ ℤ | |
| 85 | fveq2 | ⊢ ( 𝑥 = 1 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) | |
| 86 | 85 | oveq2d | ⊢ ( 𝑥 = 1 → ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐹 ‘ 1 ) ) ) |
| 87 | 86 | oveq1d | ⊢ ( 𝑥 = 1 → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 88 | ovex | ⊢ ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ∈ V | |
| 89 | 87 5 88 | fvmpt | ⊢ ( 1 ∈ 𝑇 → ( 𝐺 ‘ 1 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 90 | 70 89 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 91 | 84 90 | seq1i | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ 1 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 92 | 91 | oveq1d | ⊢ ( 𝜑 → ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) = ( ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) mod 𝑁 ) ) |
| 93 | 63 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 94 | 93 | exp1d | ⊢ ( 𝜑 → ( 𝐴 ↑ 1 ) = 𝐴 ) |
| 95 | seq1 | ⊢ ( 1 ∈ ℤ → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) | |
| 96 | 84 95 | ax-mp | ⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) |
| 97 | 96 | a1i | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 98 | 94 97 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = ( 𝐴 · ( 𝐹 ‘ 1 ) ) ) |
| 99 | 98 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 1 ) ) mod 𝑁 ) ) |
| 100 | 83 92 99 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ) |
| 101 | 96 | oveq2i | ⊢ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = ( 𝑁 gcd ( 𝐹 ‘ 1 ) ) |
| 102 | 6 | nnzd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 103 | 102 78 | gcdcomd | ⊢ ( 𝜑 → ( 𝑁 gcd ( 𝐹 ‘ 1 ) ) = ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) ) |
| 104 | 75 | simprd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 1 ) gcd 𝑁 ) = 1 ) |
| 105 | 103 104 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 gcd ( 𝐹 ‘ 1 ) ) = 1 ) |
| 106 | 101 105 | eqtrid | ⊢ ( 𝜑 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) |
| 107 | 100 106 | jca | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) |
| 108 | 107 | adantr | ⊢ ( ( 𝜑 ∧ 1 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 1 ) · ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 1 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 1 ) ) |
| 109 | nnre | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) | |
| 110 | 109 | adantr | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → 𝑧 ∈ ℝ ) |
| 111 | 110 | lep1d | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → 𝑧 ≤ ( 𝑧 + 1 ) ) |
| 112 | peano2re | ⊢ ( 𝑧 ∈ ℝ → ( 𝑧 + 1 ) ∈ ℝ ) | |
| 113 | 110 112 | syl | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → ( 𝑧 + 1 ) ∈ ℝ ) |
| 114 | 8 | adantl | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → ( ϕ ‘ 𝑁 ) ∈ ℝ ) |
| 115 | letr | ⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑧 + 1 ) ∈ ℝ ∧ ( ϕ ‘ 𝑁 ) ∈ ℝ ) → ( ( 𝑧 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) | |
| 116 | 110 113 114 115 | syl3anc | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → ( ( 𝑧 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 117 | 111 116 | mpand | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝜑 ) → ( ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) → 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 118 | 117 | imdistanda | ⊢ ( 𝑧 ∈ ℕ → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 119 | 118 | imim1d | ⊢ ( 𝑧 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) ) ) |
| 120 | 63 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝐴 ∈ ℤ ) |
| 121 | nnnn0 | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ0 ) | |
| 122 | 121 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ℕ0 ) |
| 123 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑧 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑧 ) ∈ ℤ ) | |
| 124 | 120 122 123 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 ↑ 𝑧 ) ∈ ℤ ) |
| 125 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ℕ ) | |
| 126 | 125 66 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ( ℤ≥ ‘ 1 ) ) |
| 127 | 109 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ℝ ) |
| 128 | 127 112 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ ℝ ) |
| 129 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ϕ ‘ 𝑁 ) ∈ ℝ ) |
| 130 | 127 | lep1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ≤ ( 𝑧 + 1 ) ) |
| 131 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) | |
| 132 | 127 128 129 130 131 | letrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) |
| 133 | nnz | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℤ ) | |
| 134 | 133 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑧 ∈ ℤ ) |
| 135 | 7 | nnzd | ⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℤ ) |
| 136 | 135 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ϕ ‘ 𝑁 ) ∈ ℤ ) |
| 137 | eluz | ⊢ ( ( 𝑧 ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℤ ) → ( ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑧 ) ↔ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) | |
| 138 | 134 136 137 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑧 ) ↔ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) ) |
| 139 | 132 138 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑧 ) ) |
| 140 | fzss2 | ⊢ ( ( ϕ ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 𝑧 ) → ( 1 ... 𝑧 ) ⊆ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) | |
| 141 | 139 140 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 1 ... 𝑧 ) ⊆ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 142 | 141 3 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 1 ... 𝑧 ) ⊆ 𝑇 ) |
| 143 | 142 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ ( 1 ... 𝑧 ) ) → 𝑥 ∈ 𝑇 ) |
| 144 | 65 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 145 | oveq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 gcd 𝑁 ) = ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) ) | |
| 146 | 145 | eqeq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) ) |
| 147 | 146 2 | elrab2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) ) |
| 148 | 144 147 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) ) |
| 149 | 148 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 150 | elfzoelz | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) | |
| 151 | 149 150 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 152 | 151 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 153 | 143 152 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ ( 1 ... 𝑧 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 154 | zmulcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) | |
| 155 | 154 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 156 | 126 153 155 | seqcl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ∈ ℤ ) |
| 157 | 124 156 | zmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ∈ ℤ ) |
| 158 | 157 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 159 | 2 | ssrab3 | ⊢ 𝑆 ⊆ ( 0 ..^ 𝑁 ) |
| 160 | 1 2 3 4 5 | eulerthlem1 | ⊢ ( 𝜑 → 𝐺 : 𝑇 ⟶ 𝑆 ) |
| 161 | 160 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑆 ) |
| 162 | 159 161 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 163 | elfzoelz | ⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℤ ) | |
| 164 | 162 163 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℤ ) |
| 165 | 164 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℤ ) |
| 166 | 143 165 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ∧ 𝑥 ∈ ( 1 ... 𝑧 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℤ ) |
| 167 | 126 166 155 | seqcl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℤ ) |
| 168 | 167 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℝ ) |
| 169 | 65 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝐹 : 𝑇 ⟶ 𝑆 ) |
| 170 | peano2nn | ⊢ ( 𝑧 ∈ ℕ → ( 𝑧 + 1 ) ∈ ℕ ) | |
| 171 | 170 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ ℕ ) |
| 172 | 171 | nnge1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 1 ≤ ( 𝑧 + 1 ) ) |
| 173 | 171 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ ℤ ) |
| 174 | elfz | ⊢ ( ( ( 𝑧 + 1 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℤ ) → ( ( 𝑧 + 1 ) ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ↔ ( 1 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) | |
| 175 | 84 174 | mp3an2 | ⊢ ( ( ( 𝑧 + 1 ) ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℤ ) → ( ( 𝑧 + 1 ) ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ↔ ( 1 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 176 | 173 136 175 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝑧 + 1 ) ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ↔ ( 1 ≤ ( 𝑧 + 1 ) ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) ) |
| 177 | 172 131 176 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 178 | 177 3 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑧 + 1 ) ∈ 𝑇 ) |
| 179 | 169 178 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ 𝑆 ) |
| 180 | oveq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( 𝑦 gcd 𝑁 ) = ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) ) | |
| 181 | 180 | eqeq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑧 + 1 ) ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) = 1 ) ) |
| 182 | 181 2 | elrab2 | ⊢ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ 𝑆 ↔ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) = 1 ) ) |
| 183 | 179 182 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) = 1 ) ) |
| 184 | 183 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ( 0 ..^ 𝑁 ) ) |
| 185 | elfzoelz | ⊢ ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ℤ ) | |
| 186 | 184 185 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ℤ ) |
| 187 | 120 186 | zmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℤ ) |
| 188 | 81 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑁 ∈ ℝ+ ) |
| 189 | modmul1 | ⊢ ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ∈ ℝ ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℝ ) ∧ ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℤ ∧ 𝑁 ∈ ℝ+ ) ∧ ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) ) | |
| 190 | 189 | 3expia | ⊢ ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) ∈ ℝ ∧ ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℝ ) ∧ ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℤ ∧ 𝑁 ∈ ℝ+ ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) ) ) |
| 191 | 158 168 187 188 190 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) ) ) |
| 192 | 124 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 ↑ 𝑧 ) ∈ ℂ ) |
| 193 | 156 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ∈ ℂ ) |
| 194 | 93 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝐴 ∈ ℂ ) |
| 195 | 186 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ℂ ) |
| 196 | 192 193 194 195 | mul4d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = ( ( ( 𝐴 ↑ 𝑧 ) · 𝐴 ) · ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ) |
| 197 | 194 122 | expp1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 ↑ ( 𝑧 + 1 ) ) = ( ( 𝐴 ↑ 𝑧 ) · 𝐴 ) ) |
| 198 | seqp1 | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) | |
| 199 | 126 198 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) |
| 200 | 197 199 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = ( ( ( 𝐴 ↑ 𝑧 ) · 𝐴 ) · ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ) |
| 201 | 196 200 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) ) |
| 202 | 201 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 203 | 187 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℝ ) |
| 204 | 203 188 | modcld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ∈ ℝ ) |
| 205 | modabs2 | ⊢ ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) | |
| 206 | 203 188 205 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 207 | modmul1 | ⊢ ( ( ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ∈ ℝ ∧ ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℝ ) ∧ ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℤ ∧ 𝑁 ∈ ℝ+ ) ∧ ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) → ( ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) ) | |
| 208 | 204 203 167 188 206 207 | syl221anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 209 | fveq2 | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) | |
| 210 | 209 | oveq2d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) |
| 211 | 210 | oveq1d | ⊢ ( 𝑥 = ( 𝑧 + 1 ) → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 212 | ovex | ⊢ ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ∈ V | |
| 213 | 211 5 212 | fvmpt | ⊢ ( ( 𝑧 + 1 ) ∈ 𝑇 → ( 𝐺 ‘ ( 𝑧 + 1 ) ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 214 | 178 213 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐺 ‘ ( 𝑧 + 1 ) ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) |
| 215 | 214 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐺 ‘ ( 𝑧 + 1 ) ) ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) ) |
| 216 | seqp1 | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐺 ‘ ( 𝑧 + 1 ) ) ) ) | |
| 217 | 126 216 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐺 ‘ ( 𝑧 + 1 ) ) ) ) |
| 218 | 204 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ∈ ℂ ) |
| 219 | 167 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ∈ ℂ ) |
| 220 | 218 219 | mulcomd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) ) ) |
| 221 | 215 217 220 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) = ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) ) |
| 222 | 221 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) = ( ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 223 | 187 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ∈ ℂ ) |
| 224 | 219 223 | mulcomd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) ) |
| 225 | 224 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) · ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 226 | 208 222 225 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) |
| 227 | 202 226 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) = ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) · ( 𝐴 · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) mod 𝑁 ) ↔ ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) ) |
| 228 | 191 227 | sylibd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) → ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ) ) |
| 229 | 102 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → 𝑁 ∈ ℤ ) |
| 230 | 229 186 | gcdcomd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑁 gcd ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) ) |
| 231 | 183 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝐹 ‘ ( 𝑧 + 1 ) ) gcd 𝑁 ) = 1 ) |
| 232 | 230 231 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑁 gcd ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = 1 ) |
| 233 | rpmul | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑧 + 1 ) ) ∈ ℤ ) → ( ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ∧ ( 𝑁 gcd ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = 1 ) → ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = 1 ) ) | |
| 234 | 229 156 186 233 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ∧ ( 𝑁 gcd ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = 1 ) → ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = 1 ) ) |
| 235 | 232 234 | mpan2d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 → ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = 1 ) ) |
| 236 | 199 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) ) |
| 237 | 236 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ↔ ( 𝑁 gcd ( ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) · ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = 1 ) ) |
| 238 | 235 237 | sylibrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) |
| 239 | 228 238 | anim12d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) |
| 240 | 239 | an12s | ⊢ ( ( 𝑧 ∈ ℕ ∧ ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) ) → ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) |
| 241 | 240 | ex | ⊢ ( 𝑧 ∈ ℕ → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) ) |
| 242 | 241 | a2d | ⊢ ( 𝑧 ∈ ℕ → ( ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) ) |
| 243 | 119 242 | syld | ⊢ ( 𝑧 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑧 ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ 𝑧 ) · ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ 𝑧 ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ 𝑧 ) ) = 1 ) ) → ( ( 𝜑 ∧ ( 𝑧 + 1 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( 𝑧 + 1 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( 𝑧 + 1 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( 𝑧 + 1 ) ) ) = 1 ) ) ) ) |
| 244 | 23 36 49 62 108 243 | nnind | ⊢ ( ( ϕ ‘ 𝑁 ) ∈ ℕ → ( ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) ) |
| 245 | 10 244 | mpcom | ⊢ ( ( 𝜑 ∧ ( ϕ ‘ 𝑁 ) ≤ ( ϕ ‘ 𝑁 ) ) → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) |
| 246 | 9 245 | mpdan | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) ) |
| 247 | 246 | simpld | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ) |
| 248 | 7 | nnnn0d | ⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) |
| 249 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) | |
| 250 | 63 248 249 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) |
| 251 | 3 | eleq2i | ⊢ ( 𝑥 ∈ 𝑇 ↔ 𝑥 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 252 | 251 151 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 253 | 154 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 254 | 67 252 253 | seqcl | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) |
| 255 | 250 254 | zmulcld | ⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ∈ ℤ ) |
| 256 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 257 | 256 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
| 258 | mulcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) | |
| 259 | 258 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 · 𝑦 ) = ( 𝑦 · 𝑥 ) ) |
| 260 | mulass | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) | |
| 261 | 260 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) → ( ( 𝑥 · 𝑦 ) · 𝑧 ) = ( 𝑥 · ( 𝑦 · 𝑧 ) ) ) |
| 262 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 263 | f1ocnv | ⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 → ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) | |
| 264 | 4 263 | syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) |
| 265 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑁 ∈ ℕ ) |
| 266 | 63 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝐴 ∈ ℤ ) |
| 267 | 65 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑆 ) |
| 268 | 267 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑆 ) |
| 269 | 159 268 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 270 | elfzoelz | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℤ ) | |
| 271 | 269 270 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℤ ) |
| 272 | 266 271 | zmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ ℤ ) |
| 273 | 65 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
| 274 | 273 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑆 ) |
| 275 | 159 274 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 276 | elfzoelz | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) | |
| 277 | 275 276 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) |
| 278 | 266 277 | zmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) |
| 279 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ∈ ℤ ∧ ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) → ( ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) − ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) ) ) | |
| 280 | 265 272 278 279 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) − ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 281 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 282 | 281 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 283 | 282 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) ) |
| 284 | ovex | ⊢ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) ∈ V | |
| 285 | 283 5 284 | fvmpt | ⊢ ( 𝑦 ∈ 𝑇 → ( 𝐺 ‘ 𝑦 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) ) |
| 286 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 287 | 286 | oveq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 288 | 287 | oveq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 289 | ovex | ⊢ ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ∈ V | |
| 290 | 288 5 289 | fvmpt | ⊢ ( 𝑧 ∈ 𝑇 → ( 𝐺 ‘ 𝑧 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ) |
| 291 | 285 290 | eqeqan12d | ⊢ ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ) ) |
| 292 | 291 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) mod 𝑁 ) ) ) |
| 293 | 93 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝐴 ∈ ℂ ) |
| 294 | 271 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 295 | 277 | zcnd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 296 | 293 294 295 | subdid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) − ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 297 | 296 | breq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ↔ 𝑁 ∥ ( ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) − ( 𝐴 · ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 298 | 280 292 297 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) ↔ 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 299 | 102 63 | gcdcomd | ⊢ ( 𝜑 → ( 𝑁 gcd 𝐴 ) = ( 𝐴 gcd 𝑁 ) ) |
| 300 | 1 | simp3d | ⊢ ( 𝜑 → ( 𝐴 gcd 𝑁 ) = 1 ) |
| 301 | 299 300 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 gcd 𝐴 ) = 1 ) |
| 302 | 301 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑁 gcd 𝐴 ) = 1 ) |
| 303 | 102 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑁 ∈ ℤ ) |
| 304 | 271 277 | zsubcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) |
| 305 | coprmdvds | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ∧ ( 𝑁 gcd 𝐴 ) = 1 ) → 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 306 | 303 266 304 305 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ∧ ( 𝑁 gcd 𝐴 ) = 1 ) → 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 307 | 271 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 308 | 81 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 𝑁 ∈ ℝ+ ) |
| 309 | elfzole1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 ..^ 𝑁 ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) | |
| 310 | 269 309 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 311 | elfzolt2 | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑦 ) < 𝑁 ) | |
| 312 | 269 311 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑦 ) < 𝑁 ) |
| 313 | modid | ⊢ ( ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑦 ) ∧ ( 𝐹 ‘ 𝑦 ) < 𝑁 ) ) → ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 314 | 307 308 310 312 313 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 315 | 277 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 316 | elfzole1 | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ 𝑁 ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) | |
| 317 | 275 316 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 318 | elfzolt2 | ⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑧 ) < 𝑁 ) | |
| 319 | 275 318 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝐹 ‘ 𝑧 ) < 𝑁 ) |
| 320 | modid | ⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) < 𝑁 ) ) → ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 321 | 315 308 317 319 320 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 322 | 314 321 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 323 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℤ ) → ( ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 324 | 265 271 277 323 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) mod 𝑁 ) = ( ( 𝐹 ‘ 𝑧 ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 325 | f1of1 | ⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 → 𝐹 : 𝑇 –1-1→ 𝑆 ) | |
| 326 | 4 325 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑇 –1-1→ 𝑆 ) |
| 327 | f1fveq | ⊢ ( ( 𝐹 : 𝑇 –1-1→ 𝑆 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) | |
| 328 | 326 327 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
| 329 | 322 324 328 | 3bitr3d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑁 ∥ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ↔ 𝑦 = 𝑧 ) ) |
| 330 | 306 329 | sylibd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ∧ ( 𝑁 gcd 𝐴 ) = 1 ) → 𝑦 = 𝑧 ) ) |
| 331 | 302 330 | mpan2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( 𝑁 ∥ ( 𝐴 · ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) → 𝑦 = 𝑧 ) ) |
| 332 | 298 331 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ) → ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 333 | 332 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑇 ∀ 𝑧 ∈ 𝑇 ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 334 | dff13 | ⊢ ( 𝐺 : 𝑇 –1-1→ 𝑆 ↔ ( 𝐺 : 𝑇 ⟶ 𝑆 ∧ ∀ 𝑦 ∈ 𝑇 ∀ 𝑧 ∈ 𝑇 ( ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 335 | 160 333 334 | sylanbrc | ⊢ ( 𝜑 → 𝐺 : 𝑇 –1-1→ 𝑆 ) |
| 336 | 3 | ovexi | ⊢ 𝑇 ∈ V |
| 337 | 336 | f1oen | ⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 → 𝑇 ≈ 𝑆 ) |
| 338 | 4 337 | syl | ⊢ ( 𝜑 → 𝑇 ≈ 𝑆 ) |
| 339 | fzofi | ⊢ ( 0 ..^ 𝑁 ) ∈ Fin | |
| 340 | ssfi | ⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ 𝑆 ⊆ ( 0 ..^ 𝑁 ) ) → 𝑆 ∈ Fin ) | |
| 341 | 339 159 340 | mp2an | ⊢ 𝑆 ∈ Fin |
| 342 | f1finf1o | ⊢ ( ( 𝑇 ≈ 𝑆 ∧ 𝑆 ∈ Fin ) → ( 𝐺 : 𝑇 –1-1→ 𝑆 ↔ 𝐺 : 𝑇 –1-1-onto→ 𝑆 ) ) | |
| 343 | 338 341 342 | sylancl | ⊢ ( 𝜑 → ( 𝐺 : 𝑇 –1-1→ 𝑆 ↔ 𝐺 : 𝑇 –1-1-onto→ 𝑆 ) ) |
| 344 | 335 343 | mpbid | ⊢ ( 𝜑 → 𝐺 : 𝑇 –1-1-onto→ 𝑆 ) |
| 345 | f1oco | ⊢ ( ( ◡ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ∧ 𝐺 : 𝑇 –1-1-onto→ 𝑆 ) → ( ◡ 𝐹 ∘ 𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ) | |
| 346 | 264 344 345 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ) |
| 347 | f1oeq23 | ⊢ ( ( 𝑇 = ( 1 ... ( ϕ ‘ 𝑁 ) ) ∧ 𝑇 = ( 1 ... ( ϕ ‘ 𝑁 ) ) ) → ( ( ◡ 𝐹 ∘ 𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ↔ ( ◡ 𝐹 ∘ 𝐺 ) : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) ) | |
| 348 | 3 3 347 | mp2an | ⊢ ( ( ◡ 𝐹 ∘ 𝐺 ) : 𝑇 –1-1-onto→ 𝑇 ↔ ( ◡ 𝐹 ∘ 𝐺 ) : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 349 | 346 348 | sylib | ⊢ ( 𝜑 → ( ◡ 𝐹 ∘ 𝐺 ) : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 350 | 252 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 351 | 3 | eleq2i | ⊢ ( 𝑤 ∈ 𝑇 ↔ 𝑤 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) |
| 352 | fvco3 | ⊢ ( ( 𝐺 : 𝑇 ⟶ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) | |
| 353 | 160 352 | sylan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
| 354 | 353 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) ) = ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 355 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → 𝐹 : 𝑇 –1-1-onto→ 𝑆 ) |
| 356 | 160 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
| 357 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( 𝐺 ‘ 𝑤 ) ) | |
| 358 | 355 356 357 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( 𝐺 ‘ 𝑤 ) ) |
| 359 | 354 358 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐹 ‘ ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) ) ) |
| 360 | 351 359 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐹 ‘ ( ( ◡ 𝐹 ∘ 𝐺 ) ‘ 𝑤 ) ) ) |
| 361 | 257 259 261 67 262 349 350 360 | seqf1o | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) = ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) |
| 362 | 361 254 | eqeltrd | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) |
| 363 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ∈ ℤ ∧ ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) | |
| 364 | 6 255 362 363 | syl3anc | ⊢ ( 𝜑 → ( ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) mod 𝑁 ) = ( ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) ↔ 𝑁 ∥ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 365 | 247 364 | mpbid | ⊢ ( 𝜑 → 𝑁 ∥ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) |
| 366 | 254 | zcnd | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ) |
| 367 | 366 | mullidd | ⊢ ( 𝜑 → ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) |
| 368 | 361 367 | eqtr4d | ⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) = ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) |
| 369 | 368 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 370 | 250 | zcnd | ⊢ ( 𝜑 → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ) |
| 371 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 372 | subdir | ⊢ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) | |
| 373 | 371 372 | mp3an2 | ⊢ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℂ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 374 | 370 366 373 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( 1 · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) ) ) |
| 375 | zsubcl | ⊢ ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ∈ ℤ ) | |
| 376 | 250 84 375 | sylancl | ⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ∈ ℤ ) |
| 377 | 376 | zcnd | ⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ∈ ℂ ) |
| 378 | 377 366 | mulcomd | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 379 | 369 374 378 | 3eqtr2d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) · ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) − ( seq 1 ( · , 𝐺 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 380 | 365 379 | breqtrd | ⊢ ( 𝜑 → 𝑁 ∥ ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 381 | 246 | simprd | ⊢ ( 𝜑 → ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) |
| 382 | coprmdvds | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ∧ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ∈ ℤ ) → ( ( 𝑁 ∥ ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) | |
| 383 | 102 254 376 382 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ∥ ( ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) · ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ∧ ( 𝑁 gcd ( seq 1 ( · , 𝐹 ) ‘ ( ϕ ‘ 𝑁 ) ) ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 384 | 380 381 383 | mp2and | ⊢ ( 𝜑 → 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) |
| 385 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) | |
| 386 | 84 385 | mp3an3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 387 | 6 250 386 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 388 | 384 387 | mpbird | ⊢ ( 𝜑 → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |