This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010) (Revised by Mario Carneiro, 27-Feb-2014) Avoid ax-pow . (Revised by BTernaryTau, 4-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1finf1o | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 2 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 4 | 3 | ffnd | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 5 | simpll | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≈ 𝐵 ) | |
| 6 | 3 | frnd | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ran 𝐹 ⊆ 𝐵 ) |
| 7 | df-pss | ⊢ ( ran 𝐹 ⊊ 𝐵 ↔ ( ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ 𝐵 ) ) | |
| 8 | 7 | baib | ⊢ ( ran 𝐹 ⊆ 𝐵 → ( ran 𝐹 ⊊ 𝐵 ↔ ran 𝐹 ≠ 𝐵 ) ) |
| 9 | 6 8 | syl | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 ↔ ran 𝐹 ≠ 𝐵 ) ) |
| 10 | php3 | ⊢ ( ( 𝐵 ∈ Fin ∧ ran 𝐹 ⊊ 𝐵 ) → ran 𝐹 ≺ 𝐵 ) | |
| 11 | 10 | ex | ⊢ ( 𝐵 ∈ Fin → ( ran 𝐹 ⊊ 𝐵 → ran 𝐹 ≺ 𝐵 ) ) |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 → ran 𝐹 ≺ 𝐵 ) ) |
| 13 | enfii | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ∈ Fin ) | |
| 14 | 13 | ancoms | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 15 | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) | |
| 16 | f1oenfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) → 𝐴 ≈ ran 𝐹 ) | |
| 17 | 14 15 16 | syl2an | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≈ ran 𝐹 ) |
| 18 | endom | ⊢ ( 𝐴 ≈ ran 𝐹 → 𝐴 ≼ ran 𝐹 ) | |
| 19 | domsdomtrfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≼ ran 𝐹 ∧ ran 𝐹 ≺ 𝐵 ) → 𝐴 ≺ 𝐵 ) | |
| 20 | 18 19 | syl3an2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ ran 𝐹 ∧ ran 𝐹 ≺ 𝐵 ) → 𝐴 ≺ 𝐵 ) |
| 21 | 20 | 3expia | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≈ ran 𝐹 ) → ( ran 𝐹 ≺ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
| 22 | 14 17 21 | syl2an2r | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ≺ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
| 23 | 12 22 | syld | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 → 𝐴 ≺ 𝐵 ) ) |
| 24 | sdomnen | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) | |
| 25 | 23 24 | syl6 | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ⊊ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 26 | 9 25 | sylbird | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝐹 ≠ 𝐵 → ¬ 𝐴 ≈ 𝐵 ) ) |
| 27 | 26 | necon4ad | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐴 ≈ 𝐵 → ran 𝐹 = 𝐵 ) ) |
| 28 | 5 27 | mpd | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ran 𝐹 = 𝐵 ) |
| 29 | df-fo | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ) ) | |
| 30 | 4 28 29 | sylanbrc | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 31 | df-f1o | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) | |
| 32 | 1 30 31 | sylanbrc | ⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 33 | 32 | ex | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 34 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 35 | 33 34 | impbid1 | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) ) |