This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euclid's Lemma (see ProofWiki "Euclid's Lemma", 10-Jul-2021, https://proofwiki.org/wiki/Euclid's_Lemma ): If an integer divides the product of two integers and is coprime to one of them, then it divides the other. See also theorem 1.5 in ApostolNT p. 16. Generalization of euclemma . (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by AV, 10-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprmdvds | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → 𝐾 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 2 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 3 | mulcom | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 5 | 4 | breq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ ( 𝑀 · 𝑁 ) ↔ 𝐾 ∥ ( 𝑁 · 𝑀 ) ) ) |
| 6 | dvdsmulgcd | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐾 ∥ ( 𝑁 · 𝑀 ) ↔ 𝐾 ∥ ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ ( 𝑁 · 𝑀 ) ↔ 𝐾 ∥ ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) ) ) |
| 8 | 5 7 | bitrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ ( 𝑀 · 𝑁 ) ↔ 𝐾 ∥ ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) ) ) |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ ( 𝑀 · 𝑁 ) ↔ 𝐾 ∥ ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 ∥ ( 𝑀 · 𝑁 ) ↔ 𝐾 ∥ ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) ) ) |
| 11 | gcdcom | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝐾 gcd 𝑀 ) = ( 𝑀 gcd 𝐾 ) ) | |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd 𝑀 ) = ( 𝑀 gcd 𝐾 ) ) |
| 13 | 12 | eqeq1d | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd 𝑀 ) = 1 ↔ ( 𝑀 gcd 𝐾 ) = 1 ) ) |
| 14 | oveq2 | ⊢ ( ( 𝑀 gcd 𝐾 ) = 1 → ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) = ( 𝑁 · 1 ) ) | |
| 15 | 13 14 | biimtrdi | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd 𝑀 ) = 1 → ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) = ( 𝑁 · 1 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) = ( 𝑁 · 1 ) ) |
| 17 | 2 | mulridd | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 · 1 ) = 𝑁 ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · 1 ) = 𝑁 ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝑁 · 1 ) = 𝑁 ) |
| 20 | 16 19 | eqtrd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) = 𝑁 ) |
| 21 | 20 | breq2d | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 ∥ ( 𝑁 · ( 𝑀 gcd 𝐾 ) ) ↔ 𝐾 ∥ 𝑁 ) ) |
| 22 | 10 21 | bitrd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 ∥ ( 𝑀 · 𝑁 ) ↔ 𝐾 ∥ 𝑁 ) ) |
| 23 | 22 | biimpd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → ( 𝐾 ∥ ( 𝑀 · 𝑁 ) → 𝐾 ∥ 𝑁 ) ) |
| 24 | 23 | ex | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd 𝑀 ) = 1 → ( 𝐾 ∥ ( 𝑀 · 𝑁 ) → 𝐾 ∥ 𝑁 ) ) ) |
| 25 | 24 | impcomd | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ ( 𝑀 · 𝑁 ) ∧ ( 𝐾 gcd 𝑀 ) = 1 ) → 𝐾 ∥ 𝑁 ) ) |