This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If K is relatively prime to M and to N , it is also relatively prime to their product. (Contributed by Mario Carneiro, 24-Feb-2014) (Proof shortened by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpmul | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 gcd 𝑀 ) = 1 ∧ ( 𝐾 gcd 𝑁 ) = 1 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgcddvds | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ) | |
| 2 | oveq12 | ⊢ ( ( ( 𝐾 gcd 𝑀 ) = 1 ∧ ( 𝐾 gcd 𝑁 ) = 1 ) → ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) = ( 1 · 1 ) ) | |
| 3 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 4 | 2 3 | eqtrdi | ⊢ ( ( ( 𝐾 gcd 𝑀 ) = 1 ∧ ( 𝐾 gcd 𝑁 ) = 1 ) → ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) = 1 ) |
| 5 | 4 | breq2d | ⊢ ( ( ( 𝐾 gcd 𝑀 ) = 1 ∧ ( 𝐾 gcd 𝑁 ) = 1 ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ ( ( 𝐾 gcd 𝑀 ) · ( 𝐾 gcd 𝑁 ) ) ↔ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 1 ) ) |
| 6 | 1 5 | syl5ibcom | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 gcd 𝑀 ) = 1 ∧ ( 𝐾 gcd 𝑁 ) = 1 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 1 ) ) |
| 7 | simp1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℤ ) | |
| 8 | zmulcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) | |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 10 | 7 9 | gcdcld | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℕ0 ) |
| 11 | dvds1 | ⊢ ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∈ ℕ0 → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 1 ↔ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) ∥ 1 ↔ ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) |
| 13 | 6 12 | sylibd | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝐾 gcd 𝑀 ) = 1 ∧ ( 𝐾 gcd 𝑁 ) = 1 ) → ( 𝐾 gcd ( 𝑀 · 𝑁 ) ) = 1 ) ) |