This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for modulo. (Contributed by NM, 29-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) ) |
| 3 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 5 | 4 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 6 | addlid | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( 0 + ( 𝐴 / 𝐵 ) ) = ( 𝐴 / 𝐵 ) ) | |
| 7 | 6 | fveq2d | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 8 | 5 7 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) |
| 9 | rpregt0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 10 | divge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) | |
| 11 | 9 10 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ+ ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 12 | 11 | an32s | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 0 ≤ 𝐴 ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 13 | 12 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
| 14 | simpr | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 15 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 16 | 15 | mulridd | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 · 1 ) = 𝐵 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) → ( 𝐵 · 1 ) = 𝐵 ) |
| 18 | 14 17 | breqtrrd | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐴 < 𝐵 ) → 𝐴 < ( 𝐵 · 1 ) ) |
| 19 | 18 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → 𝐴 < ( 𝐵 · 1 ) ) |
| 20 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 21 | 9 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 22 | 1re | ⊢ 1 ∈ ℝ | |
| 23 | ltdivmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) < 1 ↔ 𝐴 < ( 𝐵 · 1 ) ) ) | |
| 24 | 22 23 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) < 1 ↔ 𝐴 < ( 𝐵 · 1 ) ) ) |
| 25 | 20 21 24 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) < 1 ↔ 𝐴 < ( 𝐵 · 1 ) ) ) |
| 26 | 19 25 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) < 1 ) |
| 27 | 0z | ⊢ 0 ∈ ℤ | |
| 28 | flbi2 | ⊢ ( ( 0 ∈ ℤ ∧ ( 𝐴 / 𝐵 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = 0 ↔ ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ) ) | |
| 29 | 27 4 28 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = 0 ↔ ( 0 ≤ ( 𝐴 / 𝐵 ) ∧ ( 𝐴 / 𝐵 ) < 1 ) ) ) |
| 30 | 13 26 29 | mpbir2and | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( ⌊ ‘ ( 0 + ( 𝐴 / 𝐵 ) ) ) = 0 ) |
| 31 | 8 30 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) = 0 ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) = ( 𝐵 · 0 ) ) |
| 33 | 15 | mul01d | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 · 0 ) = 0 ) |
| 34 | 33 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐵 · 0 ) = 0 ) |
| 35 | 32 34 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) = 0 ) |
| 36 | 35 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) = ( 𝐴 − 0 ) ) |
| 37 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 38 | 37 | subid1d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 0 ) = 𝐴 ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 40 | 36 39 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 − ( 𝐵 · ( ⌊ ‘ ( 𝐴 / 𝐵 ) ) ) ) = 𝐴 ) |
| 41 | 2 40 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝐵 ) ) → ( 𝐴 mod 𝐵 ) = 𝐴 ) |