This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eulerth . (Contributed by Mario Carneiro, 8-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eulerth.1 | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ) | |
| eulerth.2 | ⊢ 𝑆 = { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } | ||
| eulerth.3 | ⊢ 𝑇 = ( 1 ... ( ϕ ‘ 𝑁 ) ) | ||
| eulerth.4 | ⊢ ( 𝜑 → 𝐹 : 𝑇 –1-1-onto→ 𝑆 ) | ||
| eulerth.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑇 ↦ ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ) | ||
| Assertion | eulerthlem1 | ⊢ ( 𝜑 → 𝐺 : 𝑇 ⟶ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerth.1 | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ) | |
| 2 | eulerth.2 | ⊢ 𝑆 = { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } | |
| 3 | eulerth.3 | ⊢ 𝑇 = ( 1 ... ( ϕ ‘ 𝑁 ) ) | |
| 4 | eulerth.4 | ⊢ ( 𝜑 → 𝐹 : 𝑇 –1-1-onto→ 𝑆 ) | |
| 5 | eulerth.5 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑇 ↦ ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ) | |
| 6 | 1 | simp2d | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝐴 ∈ ℤ ) |
| 8 | f1of | ⊢ ( 𝐹 : 𝑇 –1-1-onto→ 𝑆 → 𝐹 : 𝑇 ⟶ 𝑆 ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ 𝑆 ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 11 | oveq1 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑦 gcd 𝑁 ) = ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) ) | |
| 12 | 11 | eqeq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) ) |
| 13 | 12 2 | elrab2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) ) |
| 14 | 10 13 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) ) |
| 15 | 14 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 16 | elfzoelz | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
| 18 | 7 17 | zmulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ∈ ℤ ) |
| 19 | 1 | simp1d | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑁 ∈ ℕ ) |
| 21 | zmodfzo | ⊢ ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) | |
| 22 | 18 20 21 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 23 | modgcd | ⊢ ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) gcd 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) gcd 𝑁 ) ) | |
| 24 | 18 20 23 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) gcd 𝑁 ) = ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) gcd 𝑁 ) ) |
| 25 | 19 | nnzd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑁 ∈ ℤ ) |
| 27 | 18 26 | gcdcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) gcd 𝑁 ) = ( 𝑁 gcd ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 28 | 25 6 | gcdcomd | ⊢ ( 𝜑 → ( 𝑁 gcd 𝐴 ) = ( 𝐴 gcd 𝑁 ) ) |
| 29 | 1 | simp3d | ⊢ ( 𝜑 → ( 𝐴 gcd 𝑁 ) = 1 ) |
| 30 | 28 29 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 gcd 𝐴 ) = 1 ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑁 gcd 𝐴 ) = 1 ) |
| 32 | 26 17 | gcdcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) ) |
| 33 | 14 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑥 ) gcd 𝑁 ) = 1 ) |
| 34 | 32 33 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑁 gcd ( 𝐹 ‘ 𝑥 ) ) = 1 ) |
| 35 | rpmul | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) → ( ( ( 𝑁 gcd 𝐴 ) = 1 ∧ ( 𝑁 gcd ( 𝐹 ‘ 𝑥 ) ) = 1 ) → ( 𝑁 gcd ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) = 1 ) ) | |
| 36 | 26 7 17 35 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( ( 𝑁 gcd 𝐴 ) = 1 ∧ ( 𝑁 gcd ( 𝐹 ‘ 𝑥 ) ) = 1 ) → ( 𝑁 gcd ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) = 1 ) ) |
| 37 | 31 34 36 | mp2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑁 gcd ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) ) = 1 ) |
| 38 | 24 27 37 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) gcd 𝑁 ) = 1 ) |
| 39 | oveq1 | ⊢ ( 𝑦 = ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) → ( 𝑦 gcd 𝑁 ) = ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) gcd 𝑁 ) ) | |
| 40 | 39 | eqeq1d | ⊢ ( 𝑦 = ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) → ( ( 𝑦 gcd 𝑁 ) = 1 ↔ ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) gcd 𝑁 ) = 1 ) ) |
| 41 | 40 2 | elrab2 | ⊢ ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ∈ 𝑆 ↔ ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ∧ ( ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) gcd 𝑁 ) = 1 ) ) |
| 42 | 22 38 41 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐴 · ( 𝐹 ‘ 𝑥 ) ) mod 𝑁 ) ∈ 𝑆 ) |
| 43 | 42 5 | fmptd | ⊢ ( 𝜑 → 𝐺 : 𝑇 ⟶ 𝑆 ) |