This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for the modulo operation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| modcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| Assertion | modcld | ⊢ ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | modcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 mod 𝐵 ) ∈ ℝ ) |