This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Euler's theorem, a generalization of Fermat's little theorem. If A and N are coprime, then A ^ phi ( N ) == 1 (mod N ). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in ApostolNT p. 113. (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eulerth | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phicl | ⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) ∈ ℕ ) | |
| 2 | 1 | nnnn0d | ⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) |
| 3 | hashfz1 | ⊢ ( ( ϕ ‘ 𝑁 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) = ( ϕ ‘ 𝑁 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) = ( ϕ ‘ 𝑁 ) ) |
| 5 | dfphi2 | ⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) ) | |
| 6 | 4 5 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) = ( ♯ ‘ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ♯ ‘ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) = ( ♯ ‘ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) ) |
| 8 | fzfi | ⊢ ( 1 ... ( ϕ ‘ 𝑁 ) ) ∈ Fin | |
| 9 | fzofi | ⊢ ( 0 ..^ 𝑁 ) ∈ Fin | |
| 10 | ssrab2 | ⊢ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ⊆ ( 0 ..^ 𝑁 ) | |
| 11 | ssfi | ⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ⊆ ( 0 ..^ 𝑁 ) ) → { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ∈ Fin ) | |
| 12 | 9 10 11 | mp2an | ⊢ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ∈ Fin |
| 13 | hashen | ⊢ ( ( ( 1 ... ( ϕ ‘ 𝑁 ) ) ∈ Fin ∧ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ∈ Fin ) → ( ( ♯ ‘ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) = ( ♯ ‘ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) ↔ ( 1 ... ( ϕ ‘ 𝑁 ) ) ≈ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) ) | |
| 14 | 8 12 13 | mp2an | ⊢ ( ( ♯ ‘ ( 1 ... ( ϕ ‘ 𝑁 ) ) ) = ( ♯ ‘ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) ↔ ( 1 ... ( ϕ ‘ 𝑁 ) ) ≈ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) |
| 15 | 7 14 | sylib | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 1 ... ( ϕ ‘ 𝑁 ) ) ≈ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) |
| 16 | bren | ⊢ ( ( 1 ... ( ϕ ‘ 𝑁 ) ) ≈ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ↔ ∃ 𝑓 𝑓 : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ∃ 𝑓 𝑓 : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) |
| 18 | simpl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑓 : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) → ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ) | |
| 19 | oveq1 | ⊢ ( 𝑘 = 𝑦 → ( 𝑘 gcd 𝑁 ) = ( 𝑦 gcd 𝑁 ) ) | |
| 20 | 19 | eqeq1d | ⊢ ( 𝑘 = 𝑦 → ( ( 𝑘 gcd 𝑁 ) = 1 ↔ ( 𝑦 gcd 𝑁 ) = 1 ) ) |
| 21 | 20 | cbvrabv | ⊢ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } = { 𝑦 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑦 gcd 𝑁 ) = 1 } |
| 22 | eqid | ⊢ ( 1 ... ( ϕ ‘ 𝑁 ) ) = ( 1 ... ( ϕ ‘ 𝑁 ) ) | |
| 23 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑓 : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) → 𝑓 : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) | |
| 24 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 25 | 24 | oveq2d | ⊢ ( 𝑘 = 𝑥 → ( 𝐴 · ( 𝑓 ‘ 𝑘 ) ) = ( 𝐴 · ( 𝑓 ‘ 𝑥 ) ) ) |
| 26 | 25 | oveq1d | ⊢ ( 𝑘 = 𝑥 → ( ( 𝐴 · ( 𝑓 ‘ 𝑘 ) ) mod 𝑁 ) = ( ( 𝐴 · ( 𝑓 ‘ 𝑥 ) ) mod 𝑁 ) ) |
| 27 | 26 | cbvmptv | ⊢ ( 𝑘 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ↦ ( ( 𝐴 · ( 𝑓 ‘ 𝑘 ) ) mod 𝑁 ) ) = ( 𝑥 ∈ ( 1 ... ( ϕ ‘ 𝑁 ) ) ↦ ( ( 𝐴 · ( 𝑓 ‘ 𝑥 ) ) mod 𝑁 ) ) |
| 28 | 18 21 22 23 27 | eulerthlem2 | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ 𝑓 : ( 1 ... ( ϕ ‘ 𝑁 ) ) –1-1-onto→ { 𝑘 ∈ ( 0 ..^ 𝑁 ) ∣ ( 𝑘 gcd 𝑁 ) = 1 } ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |
| 29 | 17 28 | exlimddv | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |