This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eulerth . (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eulerth.1 | |- ( ph -> ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) ) |
|
| eulerth.2 | |- S = { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } |
||
| eulerth.3 | |- T = ( 1 ... ( phi ` N ) ) |
||
| eulerth.4 | |- ( ph -> F : T -1-1-onto-> S ) |
||
| eulerth.5 | |- G = ( x e. T |-> ( ( A x. ( F ` x ) ) mod N ) ) |
||
| Assertion | eulerthlem2 | |- ( ph -> ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerth.1 | |- ( ph -> ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) ) |
|
| 2 | eulerth.2 | |- S = { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } |
|
| 3 | eulerth.3 | |- T = ( 1 ... ( phi ` N ) ) |
|
| 4 | eulerth.4 | |- ( ph -> F : T -1-1-onto-> S ) |
|
| 5 | eulerth.5 | |- G = ( x e. T |-> ( ( A x. ( F ` x ) ) mod N ) ) |
|
| 6 | 1 | simp1d | |- ( ph -> N e. NN ) |
| 7 | 6 | phicld | |- ( ph -> ( phi ` N ) e. NN ) |
| 8 | 7 | nnred | |- ( ph -> ( phi ` N ) e. RR ) |
| 9 | 8 | leidd | |- ( ph -> ( phi ` N ) <_ ( phi ` N ) ) |
| 10 | 7 | adantr | |- ( ( ph /\ ( phi ` N ) <_ ( phi ` N ) ) -> ( phi ` N ) e. NN ) |
| 11 | breq1 | |- ( x = 1 -> ( x <_ ( phi ` N ) <-> 1 <_ ( phi ` N ) ) ) |
|
| 12 | 11 | anbi2d | |- ( x = 1 -> ( ( ph /\ x <_ ( phi ` N ) ) <-> ( ph /\ 1 <_ ( phi ` N ) ) ) ) |
| 13 | oveq2 | |- ( x = 1 -> ( A ^ x ) = ( A ^ 1 ) ) |
|
| 14 | fveq2 | |- ( x = 1 -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` 1 ) ) |
|
| 15 | 13 14 | oveq12d | |- ( x = 1 -> ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) = ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) ) |
| 16 | 15 | oveq1d | |- ( x = 1 -> ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) mod N ) ) |
| 17 | fveq2 | |- ( x = 1 -> ( seq 1 ( x. , G ) ` x ) = ( seq 1 ( x. , G ) ` 1 ) ) |
|
| 18 | 17 | oveq1d | |- ( x = 1 -> ( ( seq 1 ( x. , G ) ` x ) mod N ) = ( ( seq 1 ( x. , G ) ` 1 ) mod N ) ) |
| 19 | 16 18 | eqeq12d | |- ( x = 1 -> ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) <-> ( ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) mod N ) = ( ( seq 1 ( x. , G ) ` 1 ) mod N ) ) ) |
| 20 | 14 | oveq2d | |- ( x = 1 -> ( N gcd ( seq 1 ( x. , F ) ` x ) ) = ( N gcd ( seq 1 ( x. , F ) ` 1 ) ) ) |
| 21 | 20 | eqeq1d | |- ( x = 1 -> ( ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 <-> ( N gcd ( seq 1 ( x. , F ) ` 1 ) ) = 1 ) ) |
| 22 | 19 21 | anbi12d | |- ( x = 1 -> ( ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 ) <-> ( ( ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) mod N ) = ( ( seq 1 ( x. , G ) ` 1 ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` 1 ) ) = 1 ) ) ) |
| 23 | 12 22 | imbi12d | |- ( x = 1 -> ( ( ( ph /\ x <_ ( phi ` N ) ) -> ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 ) ) <-> ( ( ph /\ 1 <_ ( phi ` N ) ) -> ( ( ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) mod N ) = ( ( seq 1 ( x. , G ) ` 1 ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` 1 ) ) = 1 ) ) ) ) |
| 24 | breq1 | |- ( x = z -> ( x <_ ( phi ` N ) <-> z <_ ( phi ` N ) ) ) |
|
| 25 | 24 | anbi2d | |- ( x = z -> ( ( ph /\ x <_ ( phi ` N ) ) <-> ( ph /\ z <_ ( phi ` N ) ) ) ) |
| 26 | oveq2 | |- ( x = z -> ( A ^ x ) = ( A ^ z ) ) |
|
| 27 | fveq2 | |- ( x = z -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` z ) ) |
|
| 28 | 26 27 | oveq12d | |- ( x = z -> ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) = ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) ) |
| 29 | 28 | oveq1d | |- ( x = z -> ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) ) |
| 30 | fveq2 | |- ( x = z -> ( seq 1 ( x. , G ) ` x ) = ( seq 1 ( x. , G ) ` z ) ) |
|
| 31 | 30 | oveq1d | |- ( x = z -> ( ( seq 1 ( x. , G ) ` x ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) ) |
| 32 | 29 31 | eqeq12d | |- ( x = z -> ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) <-> ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) ) ) |
| 33 | 27 | oveq2d | |- ( x = z -> ( N gcd ( seq 1 ( x. , F ) ` x ) ) = ( N gcd ( seq 1 ( x. , F ) ` z ) ) ) |
| 34 | 33 | eqeq1d | |- ( x = z -> ( ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 <-> ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) ) |
| 35 | 32 34 | anbi12d | |- ( x = z -> ( ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 ) <-> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) ) ) |
| 36 | 25 35 | imbi12d | |- ( x = z -> ( ( ( ph /\ x <_ ( phi ` N ) ) -> ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 ) ) <-> ( ( ph /\ z <_ ( phi ` N ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) ) ) ) |
| 37 | breq1 | |- ( x = ( z + 1 ) -> ( x <_ ( phi ` N ) <-> ( z + 1 ) <_ ( phi ` N ) ) ) |
|
| 38 | 37 | anbi2d | |- ( x = ( z + 1 ) -> ( ( ph /\ x <_ ( phi ` N ) ) <-> ( ph /\ ( z + 1 ) <_ ( phi ` N ) ) ) ) |
| 39 | oveq2 | |- ( x = ( z + 1 ) -> ( A ^ x ) = ( A ^ ( z + 1 ) ) ) |
|
| 40 | fveq2 | |- ( x = ( z + 1 ) -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) |
|
| 41 | 39 40 | oveq12d | |- ( x = ( z + 1 ) -> ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) = ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) ) |
| 42 | 41 | oveq1d | |- ( x = ( z + 1 ) -> ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) ) |
| 43 | fveq2 | |- ( x = ( z + 1 ) -> ( seq 1 ( x. , G ) ` x ) = ( seq 1 ( x. , G ) ` ( z + 1 ) ) ) |
|
| 44 | 43 | oveq1d | |- ( x = ( z + 1 ) -> ( ( seq 1 ( x. , G ) ` x ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) ) |
| 45 | 42 44 | eqeq12d | |- ( x = ( z + 1 ) -> ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) <-> ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) ) ) |
| 46 | 40 | oveq2d | |- ( x = ( z + 1 ) -> ( N gcd ( seq 1 ( x. , F ) ` x ) ) = ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) ) |
| 47 | 46 | eqeq1d | |- ( x = ( z + 1 ) -> ( ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 <-> ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 ) ) |
| 48 | 45 47 | anbi12d | |- ( x = ( z + 1 ) -> ( ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 ) <-> ( ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 ) ) ) |
| 49 | 38 48 | imbi12d | |- ( x = ( z + 1 ) -> ( ( ( ph /\ x <_ ( phi ` N ) ) -> ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 ) ) <-> ( ( ph /\ ( z + 1 ) <_ ( phi ` N ) ) -> ( ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 ) ) ) ) |
| 50 | breq1 | |- ( x = ( phi ` N ) -> ( x <_ ( phi ` N ) <-> ( phi ` N ) <_ ( phi ` N ) ) ) |
|
| 51 | 50 | anbi2d | |- ( x = ( phi ` N ) -> ( ( ph /\ x <_ ( phi ` N ) ) <-> ( ph /\ ( phi ` N ) <_ ( phi ` N ) ) ) ) |
| 52 | oveq2 | |- ( x = ( phi ` N ) -> ( A ^ x ) = ( A ^ ( phi ` N ) ) ) |
|
| 53 | fveq2 | |- ( x = ( phi ` N ) -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) |
|
| 54 | 52 53 | oveq12d | |- ( x = ( phi ` N ) -> ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) = ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) ) |
| 55 | 54 | oveq1d | |- ( x = ( phi ` N ) -> ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) ) |
| 56 | fveq2 | |- ( x = ( phi ` N ) -> ( seq 1 ( x. , G ) ` x ) = ( seq 1 ( x. , G ) ` ( phi ` N ) ) ) |
|
| 57 | 56 | oveq1d | |- ( x = ( phi ` N ) -> ( ( seq 1 ( x. , G ) ` x ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) ) |
| 58 | 55 57 | eqeq12d | |- ( x = ( phi ` N ) -> ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) <-> ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) ) ) |
| 59 | 53 | oveq2d | |- ( x = ( phi ` N ) -> ( N gcd ( seq 1 ( x. , F ) ` x ) ) = ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) ) |
| 60 | 59 | eqeq1d | |- ( x = ( phi ` N ) -> ( ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 <-> ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = 1 ) ) |
| 61 | 58 60 | anbi12d | |- ( x = ( phi ` N ) -> ( ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 ) <-> ( ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = 1 ) ) ) |
| 62 | 51 61 | imbi12d | |- ( x = ( phi ` N ) -> ( ( ( ph /\ x <_ ( phi ` N ) ) -> ( ( ( ( A ^ x ) x. ( seq 1 ( x. , F ) ` x ) ) mod N ) = ( ( seq 1 ( x. , G ) ` x ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` x ) ) = 1 ) ) <-> ( ( ph /\ ( phi ` N ) <_ ( phi ` N ) ) -> ( ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = 1 ) ) ) ) |
| 63 | 1 | simp2d | |- ( ph -> A e. ZZ ) |
| 64 | f1of | |- ( F : T -1-1-onto-> S -> F : T --> S ) |
|
| 65 | 4 64 | syl | |- ( ph -> F : T --> S ) |
| 66 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 67 | 7 66 | eleqtrdi | |- ( ph -> ( phi ` N ) e. ( ZZ>= ` 1 ) ) |
| 68 | eluzfz1 | |- ( ( phi ` N ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( phi ` N ) ) ) |
|
| 69 | 67 68 | syl | |- ( ph -> 1 e. ( 1 ... ( phi ` N ) ) ) |
| 70 | 69 3 | eleqtrrdi | |- ( ph -> 1 e. T ) |
| 71 | 65 70 | ffvelcdmd | |- ( ph -> ( F ` 1 ) e. S ) |
| 72 | oveq1 | |- ( y = ( F ` 1 ) -> ( y gcd N ) = ( ( F ` 1 ) gcd N ) ) |
|
| 73 | 72 | eqeq1d | |- ( y = ( F ` 1 ) -> ( ( y gcd N ) = 1 <-> ( ( F ` 1 ) gcd N ) = 1 ) ) |
| 74 | 73 2 | elrab2 | |- ( ( F ` 1 ) e. S <-> ( ( F ` 1 ) e. ( 0 ..^ N ) /\ ( ( F ` 1 ) gcd N ) = 1 ) ) |
| 75 | 71 74 | sylib | |- ( ph -> ( ( F ` 1 ) e. ( 0 ..^ N ) /\ ( ( F ` 1 ) gcd N ) = 1 ) ) |
| 76 | 75 | simpld | |- ( ph -> ( F ` 1 ) e. ( 0 ..^ N ) ) |
| 77 | elfzoelz | |- ( ( F ` 1 ) e. ( 0 ..^ N ) -> ( F ` 1 ) e. ZZ ) |
|
| 78 | 76 77 | syl | |- ( ph -> ( F ` 1 ) e. ZZ ) |
| 79 | 63 78 | zmulcld | |- ( ph -> ( A x. ( F ` 1 ) ) e. ZZ ) |
| 80 | 79 | zred | |- ( ph -> ( A x. ( F ` 1 ) ) e. RR ) |
| 81 | 6 | nnrpd | |- ( ph -> N e. RR+ ) |
| 82 | modabs2 | |- ( ( ( A x. ( F ` 1 ) ) e. RR /\ N e. RR+ ) -> ( ( ( A x. ( F ` 1 ) ) mod N ) mod N ) = ( ( A x. ( F ` 1 ) ) mod N ) ) |
|
| 83 | 80 81 82 | syl2anc | |- ( ph -> ( ( ( A x. ( F ` 1 ) ) mod N ) mod N ) = ( ( A x. ( F ` 1 ) ) mod N ) ) |
| 84 | 1z | |- 1 e. ZZ |
|
| 85 | fveq2 | |- ( x = 1 -> ( F ` x ) = ( F ` 1 ) ) |
|
| 86 | 85 | oveq2d | |- ( x = 1 -> ( A x. ( F ` x ) ) = ( A x. ( F ` 1 ) ) ) |
| 87 | 86 | oveq1d | |- ( x = 1 -> ( ( A x. ( F ` x ) ) mod N ) = ( ( A x. ( F ` 1 ) ) mod N ) ) |
| 88 | ovex | |- ( ( A x. ( F ` 1 ) ) mod N ) e. _V |
|
| 89 | 87 5 88 | fvmpt | |- ( 1 e. T -> ( G ` 1 ) = ( ( A x. ( F ` 1 ) ) mod N ) ) |
| 90 | 70 89 | syl | |- ( ph -> ( G ` 1 ) = ( ( A x. ( F ` 1 ) ) mod N ) ) |
| 91 | 84 90 | seq1i | |- ( ph -> ( seq 1 ( x. , G ) ` 1 ) = ( ( A x. ( F ` 1 ) ) mod N ) ) |
| 92 | 91 | oveq1d | |- ( ph -> ( ( seq 1 ( x. , G ) ` 1 ) mod N ) = ( ( ( A x. ( F ` 1 ) ) mod N ) mod N ) ) |
| 93 | 63 | zcnd | |- ( ph -> A e. CC ) |
| 94 | 93 | exp1d | |- ( ph -> ( A ^ 1 ) = A ) |
| 95 | seq1 | |- ( 1 e. ZZ -> ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) ) |
|
| 96 | 84 95 | ax-mp | |- ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) |
| 97 | 96 | a1i | |- ( ph -> ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) ) |
| 98 | 94 97 | oveq12d | |- ( ph -> ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) = ( A x. ( F ` 1 ) ) ) |
| 99 | 98 | oveq1d | |- ( ph -> ( ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) mod N ) = ( ( A x. ( F ` 1 ) ) mod N ) ) |
| 100 | 83 92 99 | 3eqtr4rd | |- ( ph -> ( ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) mod N ) = ( ( seq 1 ( x. , G ) ` 1 ) mod N ) ) |
| 101 | 96 | oveq2i | |- ( N gcd ( seq 1 ( x. , F ) ` 1 ) ) = ( N gcd ( F ` 1 ) ) |
| 102 | 6 | nnzd | |- ( ph -> N e. ZZ ) |
| 103 | 102 78 | gcdcomd | |- ( ph -> ( N gcd ( F ` 1 ) ) = ( ( F ` 1 ) gcd N ) ) |
| 104 | 75 | simprd | |- ( ph -> ( ( F ` 1 ) gcd N ) = 1 ) |
| 105 | 103 104 | eqtrd | |- ( ph -> ( N gcd ( F ` 1 ) ) = 1 ) |
| 106 | 101 105 | eqtrid | |- ( ph -> ( N gcd ( seq 1 ( x. , F ) ` 1 ) ) = 1 ) |
| 107 | 100 106 | jca | |- ( ph -> ( ( ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) mod N ) = ( ( seq 1 ( x. , G ) ` 1 ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` 1 ) ) = 1 ) ) |
| 108 | 107 | adantr | |- ( ( ph /\ 1 <_ ( phi ` N ) ) -> ( ( ( ( A ^ 1 ) x. ( seq 1 ( x. , F ) ` 1 ) ) mod N ) = ( ( seq 1 ( x. , G ) ` 1 ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` 1 ) ) = 1 ) ) |
| 109 | nnre | |- ( z e. NN -> z e. RR ) |
|
| 110 | 109 | adantr | |- ( ( z e. NN /\ ph ) -> z e. RR ) |
| 111 | 110 | lep1d | |- ( ( z e. NN /\ ph ) -> z <_ ( z + 1 ) ) |
| 112 | peano2re | |- ( z e. RR -> ( z + 1 ) e. RR ) |
|
| 113 | 110 112 | syl | |- ( ( z e. NN /\ ph ) -> ( z + 1 ) e. RR ) |
| 114 | 8 | adantl | |- ( ( z e. NN /\ ph ) -> ( phi ` N ) e. RR ) |
| 115 | letr | |- ( ( z e. RR /\ ( z + 1 ) e. RR /\ ( phi ` N ) e. RR ) -> ( ( z <_ ( z + 1 ) /\ ( z + 1 ) <_ ( phi ` N ) ) -> z <_ ( phi ` N ) ) ) |
|
| 116 | 110 113 114 115 | syl3anc | |- ( ( z e. NN /\ ph ) -> ( ( z <_ ( z + 1 ) /\ ( z + 1 ) <_ ( phi ` N ) ) -> z <_ ( phi ` N ) ) ) |
| 117 | 111 116 | mpand | |- ( ( z e. NN /\ ph ) -> ( ( z + 1 ) <_ ( phi ` N ) -> z <_ ( phi ` N ) ) ) |
| 118 | 117 | imdistanda | |- ( z e. NN -> ( ( ph /\ ( z + 1 ) <_ ( phi ` N ) ) -> ( ph /\ z <_ ( phi ` N ) ) ) ) |
| 119 | 118 | imim1d | |- ( z e. NN -> ( ( ( ph /\ z <_ ( phi ` N ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) ) -> ( ( ph /\ ( z + 1 ) <_ ( phi ` N ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) ) ) ) |
| 120 | 63 | adantr | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> A e. ZZ ) |
| 121 | nnnn0 | |- ( z e. NN -> z e. NN0 ) |
|
| 122 | 121 | ad2antrl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> z e. NN0 ) |
| 123 | zexpcl | |- ( ( A e. ZZ /\ z e. NN0 ) -> ( A ^ z ) e. ZZ ) |
|
| 124 | 120 122 123 | syl2anc | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( A ^ z ) e. ZZ ) |
| 125 | simprl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> z e. NN ) |
|
| 126 | 125 66 | eleqtrdi | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> z e. ( ZZ>= ` 1 ) ) |
| 127 | 109 | ad2antrl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> z e. RR ) |
| 128 | 127 112 | syl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( z + 1 ) e. RR ) |
| 129 | 8 | adantr | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( phi ` N ) e. RR ) |
| 130 | 127 | lep1d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> z <_ ( z + 1 ) ) |
| 131 | simprr | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( z + 1 ) <_ ( phi ` N ) ) |
|
| 132 | 127 128 129 130 131 | letrd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> z <_ ( phi ` N ) ) |
| 133 | nnz | |- ( z e. NN -> z e. ZZ ) |
|
| 134 | 133 | ad2antrl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> z e. ZZ ) |
| 135 | 7 | nnzd | |- ( ph -> ( phi ` N ) e. ZZ ) |
| 136 | 135 | adantr | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( phi ` N ) e. ZZ ) |
| 137 | eluz | |- ( ( z e. ZZ /\ ( phi ` N ) e. ZZ ) -> ( ( phi ` N ) e. ( ZZ>= ` z ) <-> z <_ ( phi ` N ) ) ) |
|
| 138 | 134 136 137 | syl2anc | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( phi ` N ) e. ( ZZ>= ` z ) <-> z <_ ( phi ` N ) ) ) |
| 139 | 132 138 | mpbird | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( phi ` N ) e. ( ZZ>= ` z ) ) |
| 140 | fzss2 | |- ( ( phi ` N ) e. ( ZZ>= ` z ) -> ( 1 ... z ) C_ ( 1 ... ( phi ` N ) ) ) |
|
| 141 | 139 140 | syl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( 1 ... z ) C_ ( 1 ... ( phi ` N ) ) ) |
| 142 | 141 3 | sseqtrrdi | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( 1 ... z ) C_ T ) |
| 143 | 142 | sselda | |- ( ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) /\ x e. ( 1 ... z ) ) -> x e. T ) |
| 144 | 65 | ffvelcdmda | |- ( ( ph /\ x e. T ) -> ( F ` x ) e. S ) |
| 145 | oveq1 | |- ( y = ( F ` x ) -> ( y gcd N ) = ( ( F ` x ) gcd N ) ) |
|
| 146 | 145 | eqeq1d | |- ( y = ( F ` x ) -> ( ( y gcd N ) = 1 <-> ( ( F ` x ) gcd N ) = 1 ) ) |
| 147 | 146 2 | elrab2 | |- ( ( F ` x ) e. S <-> ( ( F ` x ) e. ( 0 ..^ N ) /\ ( ( F ` x ) gcd N ) = 1 ) ) |
| 148 | 144 147 | sylib | |- ( ( ph /\ x e. T ) -> ( ( F ` x ) e. ( 0 ..^ N ) /\ ( ( F ` x ) gcd N ) = 1 ) ) |
| 149 | 148 | simpld | |- ( ( ph /\ x e. T ) -> ( F ` x ) e. ( 0 ..^ N ) ) |
| 150 | elfzoelz | |- ( ( F ` x ) e. ( 0 ..^ N ) -> ( F ` x ) e. ZZ ) |
|
| 151 | 149 150 | syl | |- ( ( ph /\ x e. T ) -> ( F ` x ) e. ZZ ) |
| 152 | 151 | adantlr | |- ( ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) /\ x e. T ) -> ( F ` x ) e. ZZ ) |
| 153 | 143 152 | syldan | |- ( ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) /\ x e. ( 1 ... z ) ) -> ( F ` x ) e. ZZ ) |
| 154 | zmulcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
|
| 155 | 154 | adantl | |- ( ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
| 156 | 126 153 155 | seqcl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( seq 1 ( x. , F ) ` z ) e. ZZ ) |
| 157 | 124 156 | zmulcld | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) e. ZZ ) |
| 158 | 157 | zred | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) e. RR ) |
| 159 | 2 | ssrab3 | |- S C_ ( 0 ..^ N ) |
| 160 | 1 2 3 4 5 | eulerthlem1 | |- ( ph -> G : T --> S ) |
| 161 | 160 | ffvelcdmda | |- ( ( ph /\ x e. T ) -> ( G ` x ) e. S ) |
| 162 | 159 161 | sselid | |- ( ( ph /\ x e. T ) -> ( G ` x ) e. ( 0 ..^ N ) ) |
| 163 | elfzoelz | |- ( ( G ` x ) e. ( 0 ..^ N ) -> ( G ` x ) e. ZZ ) |
|
| 164 | 162 163 | syl | |- ( ( ph /\ x e. T ) -> ( G ` x ) e. ZZ ) |
| 165 | 164 | adantlr | |- ( ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) /\ x e. T ) -> ( G ` x ) e. ZZ ) |
| 166 | 143 165 | syldan | |- ( ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) /\ x e. ( 1 ... z ) ) -> ( G ` x ) e. ZZ ) |
| 167 | 126 166 155 | seqcl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( seq 1 ( x. , G ) ` z ) e. ZZ ) |
| 168 | 167 | zred | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( seq 1 ( x. , G ) ` z ) e. RR ) |
| 169 | 65 | adantr | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> F : T --> S ) |
| 170 | peano2nn | |- ( z e. NN -> ( z + 1 ) e. NN ) |
|
| 171 | 170 | ad2antrl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( z + 1 ) e. NN ) |
| 172 | 171 | nnge1d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> 1 <_ ( z + 1 ) ) |
| 173 | 171 | nnzd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( z + 1 ) e. ZZ ) |
| 174 | elfz | |- ( ( ( z + 1 ) e. ZZ /\ 1 e. ZZ /\ ( phi ` N ) e. ZZ ) -> ( ( z + 1 ) e. ( 1 ... ( phi ` N ) ) <-> ( 1 <_ ( z + 1 ) /\ ( z + 1 ) <_ ( phi ` N ) ) ) ) |
|
| 175 | 84 174 | mp3an2 | |- ( ( ( z + 1 ) e. ZZ /\ ( phi ` N ) e. ZZ ) -> ( ( z + 1 ) e. ( 1 ... ( phi ` N ) ) <-> ( 1 <_ ( z + 1 ) /\ ( z + 1 ) <_ ( phi ` N ) ) ) ) |
| 176 | 173 136 175 | syl2anc | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( z + 1 ) e. ( 1 ... ( phi ` N ) ) <-> ( 1 <_ ( z + 1 ) /\ ( z + 1 ) <_ ( phi ` N ) ) ) ) |
| 177 | 172 131 176 | mpbir2and | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( z + 1 ) e. ( 1 ... ( phi ` N ) ) ) |
| 178 | 177 3 | eleqtrrdi | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( z + 1 ) e. T ) |
| 179 | 169 178 | ffvelcdmd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( F ` ( z + 1 ) ) e. S ) |
| 180 | oveq1 | |- ( y = ( F ` ( z + 1 ) ) -> ( y gcd N ) = ( ( F ` ( z + 1 ) ) gcd N ) ) |
|
| 181 | 180 | eqeq1d | |- ( y = ( F ` ( z + 1 ) ) -> ( ( y gcd N ) = 1 <-> ( ( F ` ( z + 1 ) ) gcd N ) = 1 ) ) |
| 182 | 181 2 | elrab2 | |- ( ( F ` ( z + 1 ) ) e. S <-> ( ( F ` ( z + 1 ) ) e. ( 0 ..^ N ) /\ ( ( F ` ( z + 1 ) ) gcd N ) = 1 ) ) |
| 183 | 179 182 | sylib | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( F ` ( z + 1 ) ) e. ( 0 ..^ N ) /\ ( ( F ` ( z + 1 ) ) gcd N ) = 1 ) ) |
| 184 | 183 | simpld | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( F ` ( z + 1 ) ) e. ( 0 ..^ N ) ) |
| 185 | elfzoelz | |- ( ( F ` ( z + 1 ) ) e. ( 0 ..^ N ) -> ( F ` ( z + 1 ) ) e. ZZ ) |
|
| 186 | 184 185 | syl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( F ` ( z + 1 ) ) e. ZZ ) |
| 187 | 120 186 | zmulcld | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( A x. ( F ` ( z + 1 ) ) ) e. ZZ ) |
| 188 | 81 | adantr | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> N e. RR+ ) |
| 189 | modmul1 | |- ( ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) e. RR /\ ( seq 1 ( x. , G ) ` z ) e. RR ) /\ ( ( A x. ( F ` ( z + 1 ) ) ) e. ZZ /\ N e. RR+ ) /\ ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) = ( ( ( seq 1 ( x. , G ) ` z ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) ) |
|
| 190 | 189 | 3expia | |- ( ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) e. RR /\ ( seq 1 ( x. , G ) ` z ) e. RR ) /\ ( ( A x. ( F ` ( z + 1 ) ) ) e. ZZ /\ N e. RR+ ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) = ( ( ( seq 1 ( x. , G ) ` z ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) ) ) |
| 191 | 158 168 187 188 190 | syl22anc | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) = ( ( ( seq 1 ( x. , G ) ` z ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) ) ) |
| 192 | 124 | zcnd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( A ^ z ) e. CC ) |
| 193 | 156 | zcnd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( seq 1 ( x. , F ) ` z ) e. CC ) |
| 194 | 93 | adantr | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> A e. CC ) |
| 195 | 186 | zcnd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( F ` ( z + 1 ) ) e. CC ) |
| 196 | 192 193 194 195 | mul4d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) x. ( A x. ( F ` ( z + 1 ) ) ) ) = ( ( ( A ^ z ) x. A ) x. ( ( seq 1 ( x. , F ) ` z ) x. ( F ` ( z + 1 ) ) ) ) ) |
| 197 | 194 122 | expp1d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( A ^ ( z + 1 ) ) = ( ( A ^ z ) x. A ) ) |
| 198 | seqp1 | |- ( z e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , F ) ` ( z + 1 ) ) = ( ( seq 1 ( x. , F ) ` z ) x. ( F ` ( z + 1 ) ) ) ) |
|
| 199 | 126 198 | syl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( seq 1 ( x. , F ) ` ( z + 1 ) ) = ( ( seq 1 ( x. , F ) ` z ) x. ( F ` ( z + 1 ) ) ) ) |
| 200 | 197 199 | oveq12d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = ( ( ( A ^ z ) x. A ) x. ( ( seq 1 ( x. , F ) ` z ) x. ( F ` ( z + 1 ) ) ) ) ) |
| 201 | 196 200 | eqtr4d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) x. ( A x. ( F ` ( z + 1 ) ) ) ) = ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) ) |
| 202 | 201 | oveq1d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) = ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) ) |
| 203 | 187 | zred | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( A x. ( F ` ( z + 1 ) ) ) e. RR ) |
| 204 | 203 188 | modcld | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) e. RR ) |
| 205 | modabs2 | |- ( ( ( A x. ( F ` ( z + 1 ) ) ) e. RR /\ N e. RR+ ) -> ( ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) mod N ) = ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) ) |
|
| 206 | 203 188 205 | syl2anc | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) mod N ) = ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) ) |
| 207 | modmul1 | |- ( ( ( ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) e. RR /\ ( A x. ( F ` ( z + 1 ) ) ) e. RR ) /\ ( ( seq 1 ( x. , G ) ` z ) e. ZZ /\ N e. RR+ ) /\ ( ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) mod N ) = ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) ) -> ( ( ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) x. ( seq 1 ( x. , G ) ` z ) ) mod N ) = ( ( ( A x. ( F ` ( z + 1 ) ) ) x. ( seq 1 ( x. , G ) ` z ) ) mod N ) ) |
|
| 208 | 204 203 167 188 206 207 | syl221anc | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) x. ( seq 1 ( x. , G ) ` z ) ) mod N ) = ( ( ( A x. ( F ` ( z + 1 ) ) ) x. ( seq 1 ( x. , G ) ` z ) ) mod N ) ) |
| 209 | fveq2 | |- ( x = ( z + 1 ) -> ( F ` x ) = ( F ` ( z + 1 ) ) ) |
|
| 210 | 209 | oveq2d | |- ( x = ( z + 1 ) -> ( A x. ( F ` x ) ) = ( A x. ( F ` ( z + 1 ) ) ) ) |
| 211 | 210 | oveq1d | |- ( x = ( z + 1 ) -> ( ( A x. ( F ` x ) ) mod N ) = ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) ) |
| 212 | ovex | |- ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) e. _V |
|
| 213 | 211 5 212 | fvmpt | |- ( ( z + 1 ) e. T -> ( G ` ( z + 1 ) ) = ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) ) |
| 214 | 178 213 | syl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( G ` ( z + 1 ) ) = ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) ) |
| 215 | 214 | oveq2d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( seq 1 ( x. , G ) ` z ) x. ( G ` ( z + 1 ) ) ) = ( ( seq 1 ( x. , G ) ` z ) x. ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) ) ) |
| 216 | seqp1 | |- ( z e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , G ) ` ( z + 1 ) ) = ( ( seq 1 ( x. , G ) ` z ) x. ( G ` ( z + 1 ) ) ) ) |
|
| 217 | 126 216 | syl | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( seq 1 ( x. , G ) ` ( z + 1 ) ) = ( ( seq 1 ( x. , G ) ` z ) x. ( G ` ( z + 1 ) ) ) ) |
| 218 | 204 | recnd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) e. CC ) |
| 219 | 167 | zcnd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( seq 1 ( x. , G ) ` z ) e. CC ) |
| 220 | 218 219 | mulcomd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) x. ( seq 1 ( x. , G ) ` z ) ) = ( ( seq 1 ( x. , G ) ` z ) x. ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) ) ) |
| 221 | 215 217 220 | 3eqtr4d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( seq 1 ( x. , G ) ` ( z + 1 ) ) = ( ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) x. ( seq 1 ( x. , G ) ` z ) ) ) |
| 222 | 221 | oveq1d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) = ( ( ( ( A x. ( F ` ( z + 1 ) ) ) mod N ) x. ( seq 1 ( x. , G ) ` z ) ) mod N ) ) |
| 223 | 187 | zcnd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( A x. ( F ` ( z + 1 ) ) ) e. CC ) |
| 224 | 219 223 | mulcomd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( seq 1 ( x. , G ) ` z ) x. ( A x. ( F ` ( z + 1 ) ) ) ) = ( ( A x. ( F ` ( z + 1 ) ) ) x. ( seq 1 ( x. , G ) ` z ) ) ) |
| 225 | 224 | oveq1d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( seq 1 ( x. , G ) ` z ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) = ( ( ( A x. ( F ` ( z + 1 ) ) ) x. ( seq 1 ( x. , G ) ` z ) ) mod N ) ) |
| 226 | 208 222 225 | 3eqtr4rd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( seq 1 ( x. , G ) ` z ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) ) |
| 227 | 202 226 | eqeq12d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) = ( ( ( seq 1 ( x. , G ) ` z ) x. ( A x. ( F ` ( z + 1 ) ) ) ) mod N ) <-> ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) ) ) |
| 228 | 191 227 | sylibd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) -> ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) ) ) |
| 229 | 102 | adantr | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> N e. ZZ ) |
| 230 | 229 186 | gcdcomd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( N gcd ( F ` ( z + 1 ) ) ) = ( ( F ` ( z + 1 ) ) gcd N ) ) |
| 231 | 183 | simprd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( F ` ( z + 1 ) ) gcd N ) = 1 ) |
| 232 | 230 231 | eqtrd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( N gcd ( F ` ( z + 1 ) ) ) = 1 ) |
| 233 | rpmul | |- ( ( N e. ZZ /\ ( seq 1 ( x. , F ) ` z ) e. ZZ /\ ( F ` ( z + 1 ) ) e. ZZ ) -> ( ( ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 /\ ( N gcd ( F ` ( z + 1 ) ) ) = 1 ) -> ( N gcd ( ( seq 1 ( x. , F ) ` z ) x. ( F ` ( z + 1 ) ) ) ) = 1 ) ) |
|
| 234 | 229 156 186 233 | syl3anc | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 /\ ( N gcd ( F ` ( z + 1 ) ) ) = 1 ) -> ( N gcd ( ( seq 1 ( x. , F ) ` z ) x. ( F ` ( z + 1 ) ) ) ) = 1 ) ) |
| 235 | 232 234 | mpan2d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 -> ( N gcd ( ( seq 1 ( x. , F ) ` z ) x. ( F ` ( z + 1 ) ) ) ) = 1 ) ) |
| 236 | 199 | oveq2d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = ( N gcd ( ( seq 1 ( x. , F ) ` z ) x. ( F ` ( z + 1 ) ) ) ) ) |
| 237 | 236 | eqeq1d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 <-> ( N gcd ( ( seq 1 ( x. , F ) ` z ) x. ( F ` ( z + 1 ) ) ) ) = 1 ) ) |
| 238 | 235 237 | sylibrd | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 -> ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 ) ) |
| 239 | 228 238 | anim12d | |- ( ( ph /\ ( z e. NN /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) -> ( ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 ) ) ) |
| 240 | 239 | an12s | |- ( ( z e. NN /\ ( ph /\ ( z + 1 ) <_ ( phi ` N ) ) ) -> ( ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) -> ( ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 ) ) ) |
| 241 | 240 | ex | |- ( z e. NN -> ( ( ph /\ ( z + 1 ) <_ ( phi ` N ) ) -> ( ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) -> ( ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 ) ) ) ) |
| 242 | 241 | a2d | |- ( z e. NN -> ( ( ( ph /\ ( z + 1 ) <_ ( phi ` N ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) ) -> ( ( ph /\ ( z + 1 ) <_ ( phi ` N ) ) -> ( ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 ) ) ) ) |
| 243 | 119 242 | syld | |- ( z e. NN -> ( ( ( ph /\ z <_ ( phi ` N ) ) -> ( ( ( ( A ^ z ) x. ( seq 1 ( x. , F ) ` z ) ) mod N ) = ( ( seq 1 ( x. , G ) ` z ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` z ) ) = 1 ) ) -> ( ( ph /\ ( z + 1 ) <_ ( phi ` N ) ) -> ( ( ( ( A ^ ( z + 1 ) ) x. ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( z + 1 ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( z + 1 ) ) ) = 1 ) ) ) ) |
| 244 | 23 36 49 62 108 243 | nnind | |- ( ( phi ` N ) e. NN -> ( ( ph /\ ( phi ` N ) <_ ( phi ` N ) ) -> ( ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = 1 ) ) ) |
| 245 | 10 244 | mpcom | |- ( ( ph /\ ( phi ` N ) <_ ( phi ` N ) ) -> ( ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = 1 ) ) |
| 246 | 9 245 | mpdan | |- ( ph -> ( ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = 1 ) ) |
| 247 | 246 | simpld | |- ( ph -> ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) ) |
| 248 | 7 | nnnn0d | |- ( ph -> ( phi ` N ) e. NN0 ) |
| 249 | zexpcl | |- ( ( A e. ZZ /\ ( phi ` N ) e. NN0 ) -> ( A ^ ( phi ` N ) ) e. ZZ ) |
|
| 250 | 63 248 249 | syl2anc | |- ( ph -> ( A ^ ( phi ` N ) ) e. ZZ ) |
| 251 | 3 | eleq2i | |- ( x e. T <-> x e. ( 1 ... ( phi ` N ) ) ) |
| 252 | 251 151 | sylan2br | |- ( ( ph /\ x e. ( 1 ... ( phi ` N ) ) ) -> ( F ` x ) e. ZZ ) |
| 253 | 154 | adantl | |- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
| 254 | 67 252 253 | seqcl | |- ( ph -> ( seq 1 ( x. , F ) ` ( phi ` N ) ) e. ZZ ) |
| 255 | 250 254 | zmulcld | |- ( ph -> ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) e. ZZ ) |
| 256 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 257 | 256 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
| 258 | mulcom | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) = ( y x. x ) ) |
|
| 259 | 258 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) = ( y x. x ) ) |
| 260 | mulass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
|
| 261 | 260 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
| 262 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 263 | f1ocnv | |- ( F : T -1-1-onto-> S -> `' F : S -1-1-onto-> T ) |
|
| 264 | 4 263 | syl | |- ( ph -> `' F : S -1-1-onto-> T ) |
| 265 | 6 | adantr | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> N e. NN ) |
| 266 | 63 | adantr | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> A e. ZZ ) |
| 267 | 65 | ffvelcdmda | |- ( ( ph /\ y e. T ) -> ( F ` y ) e. S ) |
| 268 | 267 | adantrr | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` y ) e. S ) |
| 269 | 159 268 | sselid | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` y ) e. ( 0 ..^ N ) ) |
| 270 | elfzoelz | |- ( ( F ` y ) e. ( 0 ..^ N ) -> ( F ` y ) e. ZZ ) |
|
| 271 | 269 270 | syl | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` y ) e. ZZ ) |
| 272 | 266 271 | zmulcld | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( A x. ( F ` y ) ) e. ZZ ) |
| 273 | 65 | ffvelcdmda | |- ( ( ph /\ z e. T ) -> ( F ` z ) e. S ) |
| 274 | 273 | adantrl | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` z ) e. S ) |
| 275 | 159 274 | sselid | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` z ) e. ( 0 ..^ N ) ) |
| 276 | elfzoelz | |- ( ( F ` z ) e. ( 0 ..^ N ) -> ( F ` z ) e. ZZ ) |
|
| 277 | 275 276 | syl | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` z ) e. ZZ ) |
| 278 | 266 277 | zmulcld | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( A x. ( F ` z ) ) e. ZZ ) |
| 279 | moddvds | |- ( ( N e. NN /\ ( A x. ( F ` y ) ) e. ZZ /\ ( A x. ( F ` z ) ) e. ZZ ) -> ( ( ( A x. ( F ` y ) ) mod N ) = ( ( A x. ( F ` z ) ) mod N ) <-> N || ( ( A x. ( F ` y ) ) - ( A x. ( F ` z ) ) ) ) ) |
|
| 280 | 265 272 278 279 | syl3anc | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( ( A x. ( F ` y ) ) mod N ) = ( ( A x. ( F ` z ) ) mod N ) <-> N || ( ( A x. ( F ` y ) ) - ( A x. ( F ` z ) ) ) ) ) |
| 281 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 282 | 281 | oveq2d | |- ( x = y -> ( A x. ( F ` x ) ) = ( A x. ( F ` y ) ) ) |
| 283 | 282 | oveq1d | |- ( x = y -> ( ( A x. ( F ` x ) ) mod N ) = ( ( A x. ( F ` y ) ) mod N ) ) |
| 284 | ovex | |- ( ( A x. ( F ` y ) ) mod N ) e. _V |
|
| 285 | 283 5 284 | fvmpt | |- ( y e. T -> ( G ` y ) = ( ( A x. ( F ` y ) ) mod N ) ) |
| 286 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 287 | 286 | oveq2d | |- ( x = z -> ( A x. ( F ` x ) ) = ( A x. ( F ` z ) ) ) |
| 288 | 287 | oveq1d | |- ( x = z -> ( ( A x. ( F ` x ) ) mod N ) = ( ( A x. ( F ` z ) ) mod N ) ) |
| 289 | ovex | |- ( ( A x. ( F ` z ) ) mod N ) e. _V |
|
| 290 | 288 5 289 | fvmpt | |- ( z e. T -> ( G ` z ) = ( ( A x. ( F ` z ) ) mod N ) ) |
| 291 | 285 290 | eqeqan12d | |- ( ( y e. T /\ z e. T ) -> ( ( G ` y ) = ( G ` z ) <-> ( ( A x. ( F ` y ) ) mod N ) = ( ( A x. ( F ` z ) ) mod N ) ) ) |
| 292 | 291 | adantl | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( G ` y ) = ( G ` z ) <-> ( ( A x. ( F ` y ) ) mod N ) = ( ( A x. ( F ` z ) ) mod N ) ) ) |
| 293 | 93 | adantr | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> A e. CC ) |
| 294 | 271 | zcnd | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` y ) e. CC ) |
| 295 | 277 | zcnd | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` z ) e. CC ) |
| 296 | 293 294 295 | subdid | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( A x. ( ( F ` y ) - ( F ` z ) ) ) = ( ( A x. ( F ` y ) ) - ( A x. ( F ` z ) ) ) ) |
| 297 | 296 | breq2d | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( N || ( A x. ( ( F ` y ) - ( F ` z ) ) ) <-> N || ( ( A x. ( F ` y ) ) - ( A x. ( F ` z ) ) ) ) ) |
| 298 | 280 292 297 | 3bitr4d | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( G ` y ) = ( G ` z ) <-> N || ( A x. ( ( F ` y ) - ( F ` z ) ) ) ) ) |
| 299 | 102 63 | gcdcomd | |- ( ph -> ( N gcd A ) = ( A gcd N ) ) |
| 300 | 1 | simp3d | |- ( ph -> ( A gcd N ) = 1 ) |
| 301 | 299 300 | eqtrd | |- ( ph -> ( N gcd A ) = 1 ) |
| 302 | 301 | adantr | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( N gcd A ) = 1 ) |
| 303 | 102 | adantr | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> N e. ZZ ) |
| 304 | 271 277 | zsubcld | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( F ` y ) - ( F ` z ) ) e. ZZ ) |
| 305 | coprmdvds | |- ( ( N e. ZZ /\ A e. ZZ /\ ( ( F ` y ) - ( F ` z ) ) e. ZZ ) -> ( ( N || ( A x. ( ( F ` y ) - ( F ` z ) ) ) /\ ( N gcd A ) = 1 ) -> N || ( ( F ` y ) - ( F ` z ) ) ) ) |
|
| 306 | 303 266 304 305 | syl3anc | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( N || ( A x. ( ( F ` y ) - ( F ` z ) ) ) /\ ( N gcd A ) = 1 ) -> N || ( ( F ` y ) - ( F ` z ) ) ) ) |
| 307 | 271 | zred | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` y ) e. RR ) |
| 308 | 81 | adantr | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> N e. RR+ ) |
| 309 | elfzole1 | |- ( ( F ` y ) e. ( 0 ..^ N ) -> 0 <_ ( F ` y ) ) |
|
| 310 | 269 309 | syl | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> 0 <_ ( F ` y ) ) |
| 311 | elfzolt2 | |- ( ( F ` y ) e. ( 0 ..^ N ) -> ( F ` y ) < N ) |
|
| 312 | 269 311 | syl | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` y ) < N ) |
| 313 | modid | |- ( ( ( ( F ` y ) e. RR /\ N e. RR+ ) /\ ( 0 <_ ( F ` y ) /\ ( F ` y ) < N ) ) -> ( ( F ` y ) mod N ) = ( F ` y ) ) |
|
| 314 | 307 308 310 312 313 | syl22anc | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( F ` y ) mod N ) = ( F ` y ) ) |
| 315 | 277 | zred | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` z ) e. RR ) |
| 316 | elfzole1 | |- ( ( F ` z ) e. ( 0 ..^ N ) -> 0 <_ ( F ` z ) ) |
|
| 317 | 275 316 | syl | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> 0 <_ ( F ` z ) ) |
| 318 | elfzolt2 | |- ( ( F ` z ) e. ( 0 ..^ N ) -> ( F ` z ) < N ) |
|
| 319 | 275 318 | syl | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( F ` z ) < N ) |
| 320 | modid | |- ( ( ( ( F ` z ) e. RR /\ N e. RR+ ) /\ ( 0 <_ ( F ` z ) /\ ( F ` z ) < N ) ) -> ( ( F ` z ) mod N ) = ( F ` z ) ) |
|
| 321 | 315 308 317 319 320 | syl22anc | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( F ` z ) mod N ) = ( F ` z ) ) |
| 322 | 314 321 | eqeq12d | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( ( F ` y ) mod N ) = ( ( F ` z ) mod N ) <-> ( F ` y ) = ( F ` z ) ) ) |
| 323 | moddvds | |- ( ( N e. NN /\ ( F ` y ) e. ZZ /\ ( F ` z ) e. ZZ ) -> ( ( ( F ` y ) mod N ) = ( ( F ` z ) mod N ) <-> N || ( ( F ` y ) - ( F ` z ) ) ) ) |
|
| 324 | 265 271 277 323 | syl3anc | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( ( F ` y ) mod N ) = ( ( F ` z ) mod N ) <-> N || ( ( F ` y ) - ( F ` z ) ) ) ) |
| 325 | f1of1 | |- ( F : T -1-1-onto-> S -> F : T -1-1-> S ) |
|
| 326 | 4 325 | syl | |- ( ph -> F : T -1-1-> S ) |
| 327 | f1fveq | |- ( ( F : T -1-1-> S /\ ( y e. T /\ z e. T ) ) -> ( ( F ` y ) = ( F ` z ) <-> y = z ) ) |
|
| 328 | 326 327 | sylan | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( F ` y ) = ( F ` z ) <-> y = z ) ) |
| 329 | 322 324 328 | 3bitr3d | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( N || ( ( F ` y ) - ( F ` z ) ) <-> y = z ) ) |
| 330 | 306 329 | sylibd | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( N || ( A x. ( ( F ` y ) - ( F ` z ) ) ) /\ ( N gcd A ) = 1 ) -> y = z ) ) |
| 331 | 302 330 | mpan2d | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( N || ( A x. ( ( F ` y ) - ( F ` z ) ) ) -> y = z ) ) |
| 332 | 298 331 | sylbid | |- ( ( ph /\ ( y e. T /\ z e. T ) ) -> ( ( G ` y ) = ( G ` z ) -> y = z ) ) |
| 333 | 332 | ralrimivva | |- ( ph -> A. y e. T A. z e. T ( ( G ` y ) = ( G ` z ) -> y = z ) ) |
| 334 | dff13 | |- ( G : T -1-1-> S <-> ( G : T --> S /\ A. y e. T A. z e. T ( ( G ` y ) = ( G ` z ) -> y = z ) ) ) |
|
| 335 | 160 333 334 | sylanbrc | |- ( ph -> G : T -1-1-> S ) |
| 336 | 3 | ovexi | |- T e. _V |
| 337 | 336 | f1oen | |- ( F : T -1-1-onto-> S -> T ~~ S ) |
| 338 | 4 337 | syl | |- ( ph -> T ~~ S ) |
| 339 | fzofi | |- ( 0 ..^ N ) e. Fin |
|
| 340 | ssfi | |- ( ( ( 0 ..^ N ) e. Fin /\ S C_ ( 0 ..^ N ) ) -> S e. Fin ) |
|
| 341 | 339 159 340 | mp2an | |- S e. Fin |
| 342 | f1finf1o | |- ( ( T ~~ S /\ S e. Fin ) -> ( G : T -1-1-> S <-> G : T -1-1-onto-> S ) ) |
|
| 343 | 338 341 342 | sylancl | |- ( ph -> ( G : T -1-1-> S <-> G : T -1-1-onto-> S ) ) |
| 344 | 335 343 | mpbid | |- ( ph -> G : T -1-1-onto-> S ) |
| 345 | f1oco | |- ( ( `' F : S -1-1-onto-> T /\ G : T -1-1-onto-> S ) -> ( `' F o. G ) : T -1-1-onto-> T ) |
|
| 346 | 264 344 345 | syl2anc | |- ( ph -> ( `' F o. G ) : T -1-1-onto-> T ) |
| 347 | f1oeq23 | |- ( ( T = ( 1 ... ( phi ` N ) ) /\ T = ( 1 ... ( phi ` N ) ) ) -> ( ( `' F o. G ) : T -1-1-onto-> T <-> ( `' F o. G ) : ( 1 ... ( phi ` N ) ) -1-1-onto-> ( 1 ... ( phi ` N ) ) ) ) |
|
| 348 | 3 3 347 | mp2an | |- ( ( `' F o. G ) : T -1-1-onto-> T <-> ( `' F o. G ) : ( 1 ... ( phi ` N ) ) -1-1-onto-> ( 1 ... ( phi ` N ) ) ) |
| 349 | 346 348 | sylib | |- ( ph -> ( `' F o. G ) : ( 1 ... ( phi ` N ) ) -1-1-onto-> ( 1 ... ( phi ` N ) ) ) |
| 350 | 252 | zcnd | |- ( ( ph /\ x e. ( 1 ... ( phi ` N ) ) ) -> ( F ` x ) e. CC ) |
| 351 | 3 | eleq2i | |- ( w e. T <-> w e. ( 1 ... ( phi ` N ) ) ) |
| 352 | fvco3 | |- ( ( G : T --> S /\ w e. T ) -> ( ( `' F o. G ) ` w ) = ( `' F ` ( G ` w ) ) ) |
|
| 353 | 160 352 | sylan | |- ( ( ph /\ w e. T ) -> ( ( `' F o. G ) ` w ) = ( `' F ` ( G ` w ) ) ) |
| 354 | 353 | fveq2d | |- ( ( ph /\ w e. T ) -> ( F ` ( ( `' F o. G ) ` w ) ) = ( F ` ( `' F ` ( G ` w ) ) ) ) |
| 355 | 4 | adantr | |- ( ( ph /\ w e. T ) -> F : T -1-1-onto-> S ) |
| 356 | 160 | ffvelcdmda | |- ( ( ph /\ w e. T ) -> ( G ` w ) e. S ) |
| 357 | f1ocnvfv2 | |- ( ( F : T -1-1-onto-> S /\ ( G ` w ) e. S ) -> ( F ` ( `' F ` ( G ` w ) ) ) = ( G ` w ) ) |
|
| 358 | 355 356 357 | syl2anc | |- ( ( ph /\ w e. T ) -> ( F ` ( `' F ` ( G ` w ) ) ) = ( G ` w ) ) |
| 359 | 354 358 | eqtr2d | |- ( ( ph /\ w e. T ) -> ( G ` w ) = ( F ` ( ( `' F o. G ) ` w ) ) ) |
| 360 | 351 359 | sylan2br | |- ( ( ph /\ w e. ( 1 ... ( phi ` N ) ) ) -> ( G ` w ) = ( F ` ( ( `' F o. G ) ` w ) ) ) |
| 361 | 257 259 261 67 262 349 350 360 | seqf1o | |- ( ph -> ( seq 1 ( x. , G ) ` ( phi ` N ) ) = ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) |
| 362 | 361 254 | eqeltrd | |- ( ph -> ( seq 1 ( x. , G ) ` ( phi ` N ) ) e. ZZ ) |
| 363 | moddvds | |- ( ( N e. NN /\ ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) e. ZZ /\ ( seq 1 ( x. , G ) ` ( phi ` N ) ) e. ZZ ) -> ( ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) <-> N || ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) - ( seq 1 ( x. , G ) ` ( phi ` N ) ) ) ) ) |
|
| 364 | 6 255 362 363 | syl3anc | |- ( ph -> ( ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) mod N ) = ( ( seq 1 ( x. , G ) ` ( phi ` N ) ) mod N ) <-> N || ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) - ( seq 1 ( x. , G ) ` ( phi ` N ) ) ) ) ) |
| 365 | 247 364 | mpbid | |- ( ph -> N || ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) - ( seq 1 ( x. , G ) ` ( phi ` N ) ) ) ) |
| 366 | 254 | zcnd | |- ( ph -> ( seq 1 ( x. , F ) ` ( phi ` N ) ) e. CC ) |
| 367 | 366 | mullidd | |- ( ph -> ( 1 x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) |
| 368 | 361 367 | eqtr4d | |- ( ph -> ( seq 1 ( x. , G ) ` ( phi ` N ) ) = ( 1 x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) ) |
| 369 | 368 | oveq2d | |- ( ph -> ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) - ( seq 1 ( x. , G ) ` ( phi ` N ) ) ) = ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) - ( 1 x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) ) ) |
| 370 | 250 | zcnd | |- ( ph -> ( A ^ ( phi ` N ) ) e. CC ) |
| 371 | ax-1cn | |- 1 e. CC |
|
| 372 | subdir | |- ( ( ( A ^ ( phi ` N ) ) e. CC /\ 1 e. CC /\ ( seq 1 ( x. , F ) ` ( phi ` N ) ) e. CC ) -> ( ( ( A ^ ( phi ` N ) ) - 1 ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) - ( 1 x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) ) ) |
|
| 373 | 371 372 | mp3an2 | |- ( ( ( A ^ ( phi ` N ) ) e. CC /\ ( seq 1 ( x. , F ) ` ( phi ` N ) ) e. CC ) -> ( ( ( A ^ ( phi ` N ) ) - 1 ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) - ( 1 x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) ) ) |
| 374 | 370 366 373 | syl2anc | |- ( ph -> ( ( ( A ^ ( phi ` N ) ) - 1 ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) - ( 1 x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) ) ) |
| 375 | zsubcl | |- ( ( ( A ^ ( phi ` N ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( A ^ ( phi ` N ) ) - 1 ) e. ZZ ) |
|
| 376 | 250 84 375 | sylancl | |- ( ph -> ( ( A ^ ( phi ` N ) ) - 1 ) e. ZZ ) |
| 377 | 376 | zcnd | |- ( ph -> ( ( A ^ ( phi ` N ) ) - 1 ) e. CC ) |
| 378 | 377 366 | mulcomd | |- ( ph -> ( ( ( A ^ ( phi ` N ) ) - 1 ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = ( ( seq 1 ( x. , F ) ` ( phi ` N ) ) x. ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 379 | 369 374 378 | 3eqtr2d | |- ( ph -> ( ( ( A ^ ( phi ` N ) ) x. ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) - ( seq 1 ( x. , G ) ` ( phi ` N ) ) ) = ( ( seq 1 ( x. , F ) ` ( phi ` N ) ) x. ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 380 | 365 379 | breqtrd | |- ( ph -> N || ( ( seq 1 ( x. , F ) ` ( phi ` N ) ) x. ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 381 | 246 | simprd | |- ( ph -> ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = 1 ) |
| 382 | coprmdvds | |- ( ( N e. ZZ /\ ( seq 1 ( x. , F ) ` ( phi ` N ) ) e. ZZ /\ ( ( A ^ ( phi ` N ) ) - 1 ) e. ZZ ) -> ( ( N || ( ( seq 1 ( x. , F ) ` ( phi ` N ) ) x. ( ( A ^ ( phi ` N ) ) - 1 ) ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = 1 ) -> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
|
| 383 | 102 254 376 382 | syl3anc | |- ( ph -> ( ( N || ( ( seq 1 ( x. , F ) ` ( phi ` N ) ) x. ( ( A ^ ( phi ` N ) ) - 1 ) ) /\ ( N gcd ( seq 1 ( x. , F ) ` ( phi ` N ) ) ) = 1 ) -> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 384 | 380 381 383 | mp2and | |- ( ph -> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) |
| 385 | moddvds | |- ( ( N e. NN /\ ( A ^ ( phi ` N ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
|
| 386 | 84 385 | mp3an3 | |- ( ( N e. NN /\ ( A ^ ( phi ` N ) ) e. ZZ ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 387 | 6 250 386 | syl2anc | |- ( ph -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
| 388 | 384 387 | mpbird | |- ( ph -> ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) ) |