This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. This lemma assumes A < B , the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfiooicclem1.x | ⊢ Ⅎ 𝑥 𝜑 | |
| cncfiooicclem1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) | ||
| cncfiooicclem1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| cncfiooicclem1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| cncfiooicclem1.altb | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| cncfiooicclem1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | ||
| cncfiooicclem1.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) | ||
| cncfiooicclem1.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) | ||
| Assertion | cncfiooicclem1 | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfiooicclem1.x | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | cncfiooicclem1.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 3 | cncfiooicclem1.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 4 | cncfiooicclem1.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 5 | cncfiooicclem1.altb | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 6 | cncfiooicclem1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | |
| 7 | cncfiooicclem1.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) | |
| 8 | cncfiooicclem1.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) | |
| 9 | limccl | ⊢ ( 𝐹 limℂ 𝐴 ) ⊆ ℂ | |
| 10 | 9 8 | sselid | ⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑥 = 𝐴 ) → 𝑅 ∈ ℂ ) |
| 12 | limccl | ⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ | |
| 13 | 12 7 | sselid | ⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 14 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ ) |
| 15 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝜑 ) | |
| 16 | orel1 | ⊢ ( ¬ 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) ) | |
| 17 | 16 | con3dimp | ⊢ ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → ¬ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | 18 | elpr | ⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 20 | 17 19 | sylnibr | ⊢ ( ( ¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ { 𝐴 , 𝐵 } ) |
| 21 | 20 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ¬ 𝑥 ∈ { 𝐴 , 𝐵 } ) |
| 22 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 23 | 3 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 24 | 15 23 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 25 | 4 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 26 | 15 25 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 27 | 3 4 5 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 28 | 15 27 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 29 | prunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 30 | 24 26 28 29 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 31 | 22 30 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
| 32 | elun | ⊢ ( 𝑥 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) ) | |
| 33 | 31 32 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) ) |
| 34 | orel2 | ⊢ ( ¬ 𝑥 ∈ { 𝐴 , 𝐵 } → ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑥 ∈ { 𝐴 , 𝐵 } ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ) | |
| 35 | 21 33 34 | sylc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 36 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | |
| 37 | 6 36 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 38 | 37 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 39 | 15 35 38 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 40 | 14 39 | ifclda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 41 | 11 40 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 42 | 1 41 2 | fmptdf | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 43 | elun | ⊢ ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) | |
| 44 | 23 25 27 29 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 45 | 44 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 46 | 43 45 | bitr3id | ⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 47 | 46 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) |
| 48 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 49 | fssres | ⊢ ( ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) | |
| 50 | 42 48 49 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 51 | 50 | feqmptd | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) ) |
| 52 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 53 | 2 52 | nfcxfr | ⊢ Ⅎ 𝑥 𝐺 |
| 54 | nfcv | ⊢ Ⅎ 𝑥 ( 𝐴 (,) 𝐵 ) | |
| 55 | 53 54 | nfres | ⊢ Ⅎ 𝑥 ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) |
| 56 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 57 | 55 56 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) |
| 58 | nfcv | ⊢ Ⅎ 𝑦 ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) | |
| 59 | nfcv | ⊢ Ⅎ 𝑦 𝑥 | |
| 60 | 58 59 | nffv | ⊢ Ⅎ 𝑦 ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) |
| 61 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) | |
| 62 | 57 60 61 | cbvmpt | ⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) |
| 63 | 62 | a1i | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) ) |
| 64 | fvres | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 65 | 64 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 66 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 67 | 48 66 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 68 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑅 ∈ ℂ ) |
| 69 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑥 = 𝐵 ) → 𝐿 ∈ ℂ ) |
| 70 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ¬ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 71 | 69 70 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 72 | 68 71 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 73 | 2 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℂ ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 74 | 67 72 73 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 75 | elioo4g | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) | |
| 76 | 75 | biimpi | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 77 | 76 | simpld | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ ) ) |
| 78 | 77 | simp1d | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 79 | elioore | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ ) | |
| 80 | 79 | rexrd | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ* ) |
| 81 | eliooord | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) | |
| 82 | 81 | simpld | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 < 𝑥 ) |
| 83 | xrltne | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ) → 𝑥 ≠ 𝐴 ) | |
| 84 | 78 80 82 83 | syl3anc | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ≠ 𝐴 ) |
| 85 | 84 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 𝐴 ) |
| 86 | 85 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐴 ) |
| 87 | 86 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 88 | 81 | simprd | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 < 𝐵 ) |
| 89 | 79 88 | ltned | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ≠ 𝐵 ) |
| 90 | 89 | neneqd | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝑥 = 𝐵 ) |
| 91 | 90 | iffalsed | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 92 | 91 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 93 | 87 92 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 94 | 65 74 93 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 95 | 1 94 | mpteq2da | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 96 | 51 63 95 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 97 | 37 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 98 | ioosscn | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ | |
| 99 | 98 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 100 | ssid | ⊢ ℂ ⊆ ℂ | |
| 101 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 102 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) | |
| 103 | 101 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 104 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 105 | 104 | restid | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 106 | 103 105 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 107 | 106 | eqcomi | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 108 | 101 102 107 | cncfcn | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 109 | 99 100 108 | sylancl | ⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 110 | 6 97 109 | 3eltr3d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 111 | 96 110 | eqeltrd | ⊢ ( 𝜑 → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 112 | 104 | restuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 113 | 103 98 112 | mp2an | ⊢ ( 𝐴 (,) 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
| 114 | 113 | cncnpi | ⊢ ( ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 115 | 111 114 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 116 | 103 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 117 | 48 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 118 | ovex | ⊢ ( 𝐴 [,] 𝐵 ) ∈ V | |
| 119 | 118 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ∈ V ) |
| 120 | restabs | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) | |
| 121 | 116 117 119 120 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 122 | 121 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) ) |
| 123 | 122 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
| 124 | 123 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 125 | 115 124 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 126 | resttop | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ) | |
| 127 | 103 118 126 | mp2an | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top |
| 128 | 127 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ) |
| 129 | 48 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 130 | 3 4 | iccssred | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 131 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 132 | 130 131 | sstrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 133 | 104 | restuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( 𝐴 [,] 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 134 | 103 132 133 | sylancr | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 135 | 129 134 | sseqtrd | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 136 | 135 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 137 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 138 | 137 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( topGen ‘ ran (,) ) ∈ Top ) |
| 139 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 140 | difss | ⊢ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ | |
| 141 | 139 140 | unssi | ⊢ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ |
| 142 | 141 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
| 143 | ssun1 | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) | |
| 144 | 143 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 145 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 146 | 145 | ntrss | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 147 | 138 142 144 146 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 148 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 149 | ioontr | ⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) | |
| 150 | 148 149 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 151 | 147 150 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 152 | 48 148 | sselid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 153 | 151 152 | elind | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 154 | 130 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 155 | eqid | ⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 156 | 145 155 | restntr | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 157 | 138 154 117 156 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 158 | 153 157 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 159 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 160 | 159 | a1i | ⊢ ( 𝜑 → ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 161 | 160 | oveq1d | ⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 162 | 103 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 163 | reex | ⊢ ℝ ∈ V | |
| 164 | 163 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 165 | restabs | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) | |
| 166 | 162 130 164 165 | syl3anc | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 167 | 161 166 | eqtrd | ⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 168 | 167 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 169 | 168 | fveq1d | ⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 170 | 169 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 171 | 158 170 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 172 | 134 | feq2d | ⊢ ( 𝜑 → ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ↔ 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) ) |
| 173 | 42 172 | mpbid | ⊢ ( 𝜑 → 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) |
| 174 | 173 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) |
| 175 | eqid | ⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 176 | 175 104 | cnprest | ⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ∧ ( 𝑦 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ∧ 𝐺 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ⟶ ℂ ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
| 177 | 128 136 171 174 176 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ↔ ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) |
| 178 | 125 177 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 179 | elpri | ⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 } → ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) | |
| 180 | iftrue | ⊢ ( 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) | |
| 181 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 182 | 23 25 27 181 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 183 | 2 180 182 8 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) = 𝑅 ) |
| 184 | 97 | eqcomd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) = 𝐹 ) |
| 185 | 96 184 | eqtr2d | ⊢ ( 𝜑 → 𝐹 = ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 186 | 185 | oveq1d | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐴 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |
| 187 | 8 186 | eleqtrd | ⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) ) |
| 188 | 3 4 5 42 | limciccioolb | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) = ( 𝐺 limℂ 𝐴 ) ) |
| 189 | 187 188 | eleqtrd | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐺 limℂ 𝐴 ) ) |
| 190 | 183 189 | eqeltrd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 limℂ 𝐴 ) ) |
| 191 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 192 | 101 191 | cnplimc | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 limℂ 𝐴 ) ) ) ) |
| 193 | 132 182 192 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 limℂ 𝐴 ) ) ) ) |
| 194 | 42 190 193 | mpbir2and | ⊢ ( 𝜑 → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ) |
| 195 | 194 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ) |
| 196 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) ) | |
| 197 | 196 | eqcomd | ⊢ ( 𝑦 = 𝐴 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 198 | 197 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐴 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 199 | 195 198 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 200 | 180 | adantl | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
| 201 | eqtr2 | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐴 ) | |
| 202 | iftrue | ⊢ ( 𝐵 = 𝐴 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) = 𝑅 ) | |
| 203 | 202 | eqcomd | ⊢ ( 𝐵 = 𝐴 → 𝑅 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 204 | 201 203 | syl | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → 𝑅 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 205 | 200 204 | eqtrd | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 206 | iffalse | ⊢ ( ¬ 𝑥 = 𝐴 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) | |
| 207 | 206 | adantl | ⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 208 | iftrue | ⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) | |
| 209 | 208 | adantr | ⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) = 𝐿 ) |
| 210 | df-ne | ⊢ ( 𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴 ) | |
| 211 | pm13.18 | ⊢ ( ( 𝑥 = 𝐵 ∧ 𝑥 ≠ 𝐴 ) → 𝐵 ≠ 𝐴 ) | |
| 212 | 210 211 | sylan2br | ⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → 𝐵 ≠ 𝐴 ) |
| 213 | 212 | neneqd | ⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → ¬ 𝐵 = 𝐴 ) |
| 214 | 213 | iffalsed | ⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) |
| 215 | eqid | ⊢ 𝐵 = 𝐵 | |
| 216 | 215 | iftruei | ⊢ if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) = 𝐿 |
| 217 | 214 216 | eqtr2di | ⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → 𝐿 = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 218 | 207 209 217 | 3eqtrd | ⊢ ( ( 𝑥 = 𝐵 ∧ ¬ 𝑥 = 𝐴 ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 219 | 205 218 | pm2.61dan | ⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 220 | 4 | leidd | ⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
| 221 | 3 4 4 27 220 | eliccd | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 222 | 216 13 | eqeltrid | ⊢ ( 𝜑 → if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ∈ ℂ ) |
| 223 | 10 222 | ifcld | ⊢ ( 𝜑 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 224 | 2 219 221 223 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) = if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 225 | 3 5 | gtned | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
| 226 | 225 | neneqd | ⊢ ( 𝜑 → ¬ 𝐵 = 𝐴 ) |
| 227 | 226 | iffalsed | ⊢ ( 𝜑 → if ( 𝐵 = 𝐴 , 𝑅 , if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) = if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) ) |
| 228 | 216 | a1i | ⊢ ( 𝜑 → if ( 𝐵 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝐵 ) ) = 𝐿 ) |
| 229 | 224 227 228 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) = 𝐿 ) |
| 230 | 185 | oveq1d | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ) |
| 231 | 7 230 | eleqtrd | ⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) ) |
| 232 | 3 4 5 42 | limcicciooub | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) = ( 𝐺 limℂ 𝐵 ) ) |
| 233 | 231 232 | eleqtrd | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐺 limℂ 𝐵 ) ) |
| 234 | 229 233 | eqeltrd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ( 𝐺 limℂ 𝐵 ) ) |
| 235 | 101 191 | cnplimc | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐵 ) ∈ ( 𝐺 limℂ 𝐵 ) ) ) ) |
| 236 | 132 221 235 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ( 𝐺 ‘ 𝐵 ) ∈ ( 𝐺 limℂ 𝐵 ) ) ) ) |
| 237 | 42 234 236 | mpbir2and | ⊢ ( 𝜑 → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) |
| 238 | 237 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) |
| 239 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) ) | |
| 240 | 239 | eqcomd | ⊢ ( 𝑦 = 𝐵 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 241 | 240 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 242 | 238 241 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 243 | 199 242 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 244 | 179 243 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝐴 , 𝐵 } ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 245 | 178 244 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∨ 𝑦 ∈ { 𝐴 , 𝐵 } ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 246 | 47 245 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 247 | 246 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) |
| 248 | 101 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 249 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) | |
| 250 | 248 132 249 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 251 | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) ) | |
| 252 | 250 248 251 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑦 ) ) ) ) |
| 253 | 42 247 252 | mpbir2and | ⊢ ( 𝜑 → 𝐺 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 254 | 101 191 107 | cncfcn | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 255 | 132 100 254 | sylancl | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 256 | 253 255 | eleqtrrd | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |