This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An interior in a subspace topology. Willard inGeneral Topology says that there is no analogue of restcls for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | ||
| Assertion | restntr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | restcls.2 | ⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) | |
| 3 | 2 | fveq2i | ⊢ ( int ‘ 𝐾 ) = ( int ‘ ( 𝐽 ↾t 𝑌 ) ) |
| 4 | 3 | fveq1i | ⊢ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ 𝑆 ) |
| 5 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 6 | ssexg | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → 𝑌 ∈ V ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
| 8 | 5 7 | sylan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
| 9 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) | |
| 10 | 8 9 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) |
| 11 | 10 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) |
| 12 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 13 | 12 | sseq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑌 ↔ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
| 14 | 13 | biimp3a | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 15 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝑌 ) = ∪ ( 𝐽 ↾t 𝑌 ) | |
| 16 | 15 | ntropn | ⊢ ( ( ( 𝐽 ↾t 𝑌 ) ∈ Top ∧ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) → ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
| 17 | 11 14 16 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
| 18 | 4 17 | eqeltrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
| 19 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐽 ∈ Top ) | |
| 20 | uniexg | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) | |
| 21 | 1 20 | eqeltrid | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ V ) |
| 22 | ssexg | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ V ) → 𝑌 ∈ V ) | |
| 23 | 21 22 | sylan2 | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝐽 ∈ Top ) → 𝑌 ∈ V ) |
| 24 | 23 | ancoms | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
| 25 | 24 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑌 ∈ V ) |
| 26 | elrest | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑜 ∈ 𝐽 ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) | |
| 27 | 19 25 26 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑜 ∈ 𝐽 ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) |
| 28 | 18 27 | mpbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ∃ 𝑜 ∈ 𝐽 ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) |
| 29 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ 𝑋 ) |
| 30 | 29 | sseld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑜 → 𝑥 ∈ 𝑋 ) ) |
| 31 | 30 | adantrr | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → 𝑥 ∈ 𝑋 ) ) |
| 32 | 31 | 3ad2antl1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → 𝑥 ∈ 𝑋 ) ) |
| 33 | eldif | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ 𝑌 ) ) | |
| 34 | 33 | simplbi2 | ⊢ ( 𝑥 ∈ 𝑋 → ( ¬ 𝑥 ∈ 𝑌 → 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ) |
| 35 | 34 | orrd | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ) |
| 36 | 32 35 | syl6 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → ( 𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 37 | elin | ⊢ ( 𝑥 ∈ ( 𝑜 ∩ 𝑌 ) ↔ ( 𝑥 ∈ 𝑜 ∧ 𝑥 ∈ 𝑌 ) ) | |
| 38 | eleq2 | ⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( 𝑥 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( 𝑜 ∩ 𝑌 ) ) ) | |
| 39 | elun1 | ⊢ ( 𝑥 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) | |
| 40 | 38 39 | biimtrrdi | ⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( 𝑥 ∈ ( 𝑜 ∩ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 41 | 40 | ad2antll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ ( 𝑜 ∩ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 42 | 37 41 | biimtrrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( ( 𝑥 ∈ 𝑜 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 43 | 42 | expdimp | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) ∧ 𝑥 ∈ 𝑜 ) → ( 𝑥 ∈ 𝑌 → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 44 | elun2 | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) | |
| 45 | 44 | a1i | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) ∧ 𝑥 ∈ 𝑜 ) → ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 46 | 43 45 | jaod | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) ∧ 𝑥 ∈ 𝑜 ) → ( ( 𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 47 | 46 | ex | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → ( ( 𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) ) |
| 48 | 36 47 | mpdd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 49 | 48 | ssrdv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → 𝑜 ⊆ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
| 50 | 11 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) |
| 51 | 2 50 | eqeltrid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → 𝐾 ∈ Top ) |
| 52 | 14 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 53 | 2 | unieqi | ⊢ ∪ 𝐾 = ∪ ( 𝐽 ↾t 𝑌 ) |
| 54 | 53 | eqcomi | ⊢ ∪ ( 𝐽 ↾t 𝑌 ) = ∪ 𝐾 |
| 55 | 54 | ntrss2 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 56 | 51 52 55 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 57 | unss1 | ⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
| 59 | 49 58 | sstrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
| 60 | simpl1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝐽 ∈ Top ) | |
| 61 | sstr | ⊢ ( ( 𝑆 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) | |
| 62 | 61 | ancoms | ⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ 𝑋 ) |
| 63 | 62 | 3adant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ 𝑋 ) |
| 64 | 63 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑆 ⊆ 𝑋 ) |
| 65 | difss | ⊢ ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 | |
| 66 | unss | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 ) ↔ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) | |
| 67 | 64 65 66 | sylanblc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) |
| 68 | simprl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑜 ∈ 𝐽 ) | |
| 69 | simprr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) | |
| 70 | 1 | ssntr | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑜 ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 71 | 60 67 68 69 70 | syl22anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑜 ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
| 72 | 71 | ssrind | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → ( 𝑜 ∩ 𝑌 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| 73 | sseq1 | ⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ↔ ( 𝑜 ∩ 𝑌 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) | |
| 74 | 72 73 | syl5ibrcom | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) |
| 75 | 74 | expr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) ) |
| 76 | 75 | com23 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) ) |
| 77 | 76 | impr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) |
| 78 | 59 77 | mpd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| 79 | 28 78 | rexlimddv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| 80 | 2 11 | eqeltrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐾 ∈ Top ) |
| 81 | 8 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑌 ∈ V ) |
| 82 | 63 65 66 | sylanblc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) |
| 83 | 1 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∈ 𝐽 ) |
| 84 | 19 82 83 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∈ 𝐽 ) |
| 85 | elrestr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ∧ ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∈ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ∈ ( 𝐽 ↾t 𝑌 ) ) | |
| 86 | 19 81 84 85 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
| 87 | 86 2 | eleqtrrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ∈ 𝐾 ) |
| 88 | 1 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
| 89 | 19 82 88 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
| 90 | 89 | ssrind | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) ) |
| 91 | elin | ⊢ ( 𝑥 ∈ ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ) | |
| 92 | elun | ⊢ ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ) | |
| 93 | orcom | ⊢ ( ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ↔ ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ∨ 𝑥 ∈ 𝑆 ) ) | |
| 94 | df-or | ⊢ ( ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ∨ 𝑥 ∈ 𝑆 ) ↔ ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) | |
| 95 | 93 94 | bitri | ⊢ ( ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ↔ ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) |
| 96 | 92 95 | bitri | ⊢ ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ↔ ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) |
| 97 | 96 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ↔ ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) ) |
| 98 | 91 97 | bitri | ⊢ ( 𝑥 ∈ ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) ↔ ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) ) |
| 99 | elndif | ⊢ ( 𝑥 ∈ 𝑌 → ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) | |
| 100 | pm2.27 | ⊢ ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) ) | |
| 101 | 99 100 | syl | ⊢ ( 𝑥 ∈ 𝑌 → ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) ) |
| 102 | 101 | impcom | ⊢ ( ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑆 ) |
| 103 | 102 | a1i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) |
| 104 | 98 103 | biimtrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑥 ∈ ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) |
| 105 | 104 | ssrdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) ⊆ 𝑆 ) |
| 106 | 90 105 | sstrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ 𝑆 ) |
| 107 | 54 | ssntr | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) ∧ ( ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ∈ 𝐾 ∧ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ 𝑆 ) ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 108 | 80 14 87 106 107 | syl22anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 109 | 79 108 | eqssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |