This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. This lemma assumes A < B , the invoking theorem drops this assumption. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfiooicclem1.x | |- F/ x ph |
|
| cncfiooicclem1.g | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
||
| cncfiooicclem1.a | |- ( ph -> A e. RR ) |
||
| cncfiooicclem1.b | |- ( ph -> B e. RR ) |
||
| cncfiooicclem1.altb | |- ( ph -> A < B ) |
||
| cncfiooicclem1.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
||
| cncfiooicclem1.l | |- ( ph -> L e. ( F limCC B ) ) |
||
| cncfiooicclem1.r | |- ( ph -> R e. ( F limCC A ) ) |
||
| Assertion | cncfiooicclem1 | |- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfiooicclem1.x | |- F/ x ph |
|
| 2 | cncfiooicclem1.g | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
|
| 3 | cncfiooicclem1.a | |- ( ph -> A e. RR ) |
|
| 4 | cncfiooicclem1.b | |- ( ph -> B e. RR ) |
|
| 5 | cncfiooicclem1.altb | |- ( ph -> A < B ) |
|
| 6 | cncfiooicclem1.f | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 7 | cncfiooicclem1.l | |- ( ph -> L e. ( F limCC B ) ) |
|
| 8 | cncfiooicclem1.r | |- ( ph -> R e. ( F limCC A ) ) |
|
| 9 | limccl | |- ( F limCC A ) C_ CC |
|
| 10 | 9 8 | sselid | |- ( ph -> R e. CC ) |
| 11 | 10 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> R e. CC ) |
| 12 | limccl | |- ( F limCC B ) C_ CC |
|
| 13 | 12 7 | sselid | |- ( ph -> L e. CC ) |
| 14 | 13 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> L e. CC ) |
| 15 | simplll | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ph ) |
|
| 16 | orel1 | |- ( -. x = A -> ( ( x = A \/ x = B ) -> x = B ) ) |
|
| 17 | 16 | con3dimp | |- ( ( -. x = A /\ -. x = B ) -> -. ( x = A \/ x = B ) ) |
| 18 | vex | |- x e. _V |
|
| 19 | 18 | elpr | |- ( x e. { A , B } <-> ( x = A \/ x = B ) ) |
| 20 | 17 19 | sylnibr | |- ( ( -. x = A /\ -. x = B ) -> -. x e. { A , B } ) |
| 21 | 20 | adantll | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> -. x e. { A , B } ) |
| 22 | simpllr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A [,] B ) ) |
|
| 23 | 3 | rexrd | |- ( ph -> A e. RR* ) |
| 24 | 15 23 | syl | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* ) |
| 25 | 4 | rexrd | |- ( ph -> B e. RR* ) |
| 26 | 15 25 | syl | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* ) |
| 27 | 3 4 5 | ltled | |- ( ph -> A <_ B ) |
| 28 | 15 27 | syl | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A <_ B ) |
| 29 | prunioo | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
|
| 30 | 24 26 28 29 | syl3anc | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 31 | 22 30 | eleqtrrd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( ( A (,) B ) u. { A , B } ) ) |
| 32 | elun | |- ( x e. ( ( A (,) B ) u. { A , B } ) <-> ( x e. ( A (,) B ) \/ x e. { A , B } ) ) |
|
| 33 | 31 32 | sylib | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( x e. ( A (,) B ) \/ x e. { A , B } ) ) |
| 34 | orel2 | |- ( -. x e. { A , B } -> ( ( x e. ( A (,) B ) \/ x e. { A , B } ) -> x e. ( A (,) B ) ) ) |
|
| 35 | 21 33 34 | sylc | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) ) |
| 36 | cncff | |- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
|
| 37 | 6 36 | syl | |- ( ph -> F : ( A (,) B ) --> CC ) |
| 38 | 37 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( F ` x ) e. CC ) |
| 39 | 15 35 38 | syl2anc | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) e. CC ) |
| 40 | 14 39 | ifclda | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = B , L , ( F ` x ) ) e. CC ) |
| 41 | 11 40 | ifclda | |- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 42 | 1 41 2 | fmptdf | |- ( ph -> G : ( A [,] B ) --> CC ) |
| 43 | elun | |- ( y e. ( ( A (,) B ) u. { A , B } ) <-> ( y e. ( A (,) B ) \/ y e. { A , B } ) ) |
|
| 44 | 23 25 27 29 | syl3anc | |- ( ph -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 45 | 44 | eleq2d | |- ( ph -> ( y e. ( ( A (,) B ) u. { A , B } ) <-> y e. ( A [,] B ) ) ) |
| 46 | 43 45 | bitr3id | |- ( ph -> ( ( y e. ( A (,) B ) \/ y e. { A , B } ) <-> y e. ( A [,] B ) ) ) |
| 47 | 46 | biimpar | |- ( ( ph /\ y e. ( A [,] B ) ) -> ( y e. ( A (,) B ) \/ y e. { A , B } ) ) |
| 48 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 49 | fssres | |- ( ( G : ( A [,] B ) --> CC /\ ( A (,) B ) C_ ( A [,] B ) ) -> ( G |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
|
| 50 | 42 48 49 | sylancl | |- ( ph -> ( G |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
| 51 | 50 | feqmptd | |- ( ph -> ( G |` ( A (,) B ) ) = ( y e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` y ) ) ) |
| 52 | nfmpt1 | |- F/_ x ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
|
| 53 | 2 52 | nfcxfr | |- F/_ x G |
| 54 | nfcv | |- F/_ x ( A (,) B ) |
|
| 55 | 53 54 | nfres | |- F/_ x ( G |` ( A (,) B ) ) |
| 56 | nfcv | |- F/_ x y |
|
| 57 | 55 56 | nffv | |- F/_ x ( ( G |` ( A (,) B ) ) ` y ) |
| 58 | nfcv | |- F/_ y ( G |` ( A (,) B ) ) |
|
| 59 | nfcv | |- F/_ y x |
|
| 60 | 58 59 | nffv | |- F/_ y ( ( G |` ( A (,) B ) ) ` x ) |
| 61 | fveq2 | |- ( y = x -> ( ( G |` ( A (,) B ) ) ` y ) = ( ( G |` ( A (,) B ) ) ` x ) ) |
|
| 62 | 57 60 61 | cbvmpt | |- ( y e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` y ) ) = ( x e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` x ) ) |
| 63 | 62 | a1i | |- ( ph -> ( y e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` y ) ) = ( x e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` x ) ) ) |
| 64 | fvres | |- ( x e. ( A (,) B ) -> ( ( G |` ( A (,) B ) ) ` x ) = ( G ` x ) ) |
|
| 65 | 64 | adantl | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G |` ( A (,) B ) ) ` x ) = ( G ` x ) ) |
| 66 | simpr | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
|
| 67 | 48 66 | sselid | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) |
| 68 | 10 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> R e. CC ) |
| 69 | 13 | ad2antrr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ x = B ) -> L e. CC ) |
| 70 | 38 | adantr | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ -. x = B ) -> ( F ` x ) e. CC ) |
| 71 | 69 70 | ifclda | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) e. CC ) |
| 72 | 68 71 | ifcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 73 | 2 | fvmpt2 | |- ( ( x e. ( A [,] B ) /\ if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 74 | 67 72 73 | syl2anc | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 75 | elioo4g | |- ( x e. ( A (,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ x e. RR ) /\ ( A < x /\ x < B ) ) ) |
|
| 76 | 75 | biimpi | |- ( x e. ( A (,) B ) -> ( ( A e. RR* /\ B e. RR* /\ x e. RR ) /\ ( A < x /\ x < B ) ) ) |
| 77 | 76 | simpld | |- ( x e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* /\ x e. RR ) ) |
| 78 | 77 | simp1d | |- ( x e. ( A (,) B ) -> A e. RR* ) |
| 79 | elioore | |- ( x e. ( A (,) B ) -> x e. RR ) |
|
| 80 | 79 | rexrd | |- ( x e. ( A (,) B ) -> x e. RR* ) |
| 81 | eliooord | |- ( x e. ( A (,) B ) -> ( A < x /\ x < B ) ) |
|
| 82 | 81 | simpld | |- ( x e. ( A (,) B ) -> A < x ) |
| 83 | xrltne | |- ( ( A e. RR* /\ x e. RR* /\ A < x ) -> x =/= A ) |
|
| 84 | 78 80 82 83 | syl3anc | |- ( x e. ( A (,) B ) -> x =/= A ) |
| 85 | 84 | adantl | |- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A ) |
| 86 | 85 | neneqd | |- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A ) |
| 87 | 86 | iffalsed | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 88 | 81 | simprd | |- ( x e. ( A (,) B ) -> x < B ) |
| 89 | 79 88 | ltned | |- ( x e. ( A (,) B ) -> x =/= B ) |
| 90 | 89 | neneqd | |- ( x e. ( A (,) B ) -> -. x = B ) |
| 91 | 90 | iffalsed | |- ( x e. ( A (,) B ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 92 | 91 | adantl | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 93 | 87 92 | eqtrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 94 | 65 74 93 | 3eqtrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
| 95 | 1 94 | mpteq2da | |- ( ph -> ( x e. ( A (,) B ) |-> ( ( G |` ( A (,) B ) ) ` x ) ) = ( x e. ( A (,) B ) |-> ( F ` x ) ) ) |
| 96 | 51 63 95 | 3eqtrd | |- ( ph -> ( G |` ( A (,) B ) ) = ( x e. ( A (,) B ) |-> ( F ` x ) ) ) |
| 97 | 37 | feqmptd | |- ( ph -> F = ( x e. ( A (,) B ) |-> ( F ` x ) ) ) |
| 98 | ioosscn | |- ( A (,) B ) C_ CC |
|
| 99 | 98 | a1i | |- ( ph -> ( A (,) B ) C_ CC ) |
| 100 | ssid | |- CC C_ CC |
|
| 101 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 102 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
|
| 103 | 101 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 104 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 105 | 104 | restid | |- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
| 106 | 103 105 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
| 107 | 106 | eqcomi | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 108 | 101 102 107 | cncfcn | |- ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 109 | 99 100 108 | sylancl | |- ( ph -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 110 | 6 97 109 | 3eltr3d | |- ( ph -> ( x e. ( A (,) B ) |-> ( F ` x ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 111 | 96 110 | eqeltrd | |- ( ph -> ( G |` ( A (,) B ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 112 | 104 | restuni | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,) B ) C_ CC ) -> ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
| 113 | 103 98 112 | mp2an | |- ( A (,) B ) = U. ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
| 114 | 113 | cncnpi | |- ( ( ( G |` ( A (,) B ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) /\ y e. ( A (,) B ) ) -> ( G |` ( A (,) B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 115 | 111 114 | sylan | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( G |` ( A (,) B ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 116 | 103 | a1i | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( TopOpen ` CCfld ) e. Top ) |
| 117 | 48 | a1i | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ ( A [,] B ) ) |
| 118 | ovex | |- ( A [,] B ) e. _V |
|
| 119 | 118 | a1i | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( A [,] B ) e. _V ) |
| 120 | restabs | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,) B ) C_ ( A [,] B ) /\ ( A [,] B ) e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
|
| 121 | 116 117 119 120 | syl3anc | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) ) |
| 122 | 121 | eqcomd | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) ) |
| 123 | 122 | oveq1d | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ) |
| 124 | 123 | fveq1d | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 125 | 115 124 | eleqtrd | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( G |` ( A (,) B ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 126 | resttop | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top ) |
|
| 127 | 103 118 126 | mp2an | |- ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top |
| 128 | 127 | a1i | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top ) |
| 129 | 48 | a1i | |- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 130 | 3 4 | iccssred | |- ( ph -> ( A [,] B ) C_ RR ) |
| 131 | ax-resscn | |- RR C_ CC |
|
| 132 | 130 131 | sstrdi | |- ( ph -> ( A [,] B ) C_ CC ) |
| 133 | 104 | restuni | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) C_ CC ) -> ( A [,] B ) = U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
| 134 | 103 132 133 | sylancr | |- ( ph -> ( A [,] B ) = U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
| 135 | 129 134 | sseqtrd | |- ( ph -> ( A (,) B ) C_ U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
| 136 | 135 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
| 137 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 138 | 137 | a1i | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( topGen ` ran (,) ) e. Top ) |
| 139 | ioossre | |- ( A (,) B ) C_ RR |
|
| 140 | difss | |- ( RR \ ( A [,] B ) ) C_ RR |
|
| 141 | 139 140 | unssi | |- ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR |
| 142 | 141 | a1i | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR ) |
| 143 | ssun1 | |- ( A (,) B ) C_ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) |
|
| 144 | 143 | a1i | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( A (,) B ) C_ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
| 145 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 146 | 145 | ntrss | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR /\ ( A (,) B ) C_ ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
| 147 | 138 142 144 146 | syl3anc | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
| 148 | simpr | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( A (,) B ) ) |
|
| 149 | ioontr | |- ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) |
|
| 150 | 148 149 | eleqtrrdi | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) |
| 151 | 147 150 | sseldd | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
| 152 | 48 148 | sselid | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( A [,] B ) ) |
| 153 | 151 152 | elind | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
| 154 | 130 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( A [,] B ) C_ RR ) |
| 155 | eqid | |- ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
|
| 156 | 145 155 | restntr | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR /\ ( A (,) B ) C_ ( A [,] B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
| 157 | 138 154 117 156 | syl3anc | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A (,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
| 158 | 153 157 | eleqtrrd | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) ) |
| 159 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 160 | 159 | a1i | |- ( ph -> ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 161 | 160 | oveq1d | |- ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,] B ) ) ) |
| 162 | 103 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 163 | reex | |- RR e. _V |
|
| 164 | 163 | a1i | |- ( ph -> RR e. _V ) |
| 165 | restabs | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,] B ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
|
| 166 | 162 130 164 165 | syl3anc | |- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
| 167 | 161 166 | eqtrd | |- ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
| 168 | 167 | fveq2d | |- ( ph -> ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ) |
| 169 | 168 | fveq1d | |- ( ph -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) ) |
| 170 | 169 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) ) |
| 171 | 158 170 | eleqtrd | |- ( ( ph /\ y e. ( A (,) B ) ) -> y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) ) |
| 172 | 134 | feq2d | |- ( ph -> ( G : ( A [,] B ) --> CC <-> G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) ) |
| 173 | 42 172 | mpbid | |- ( ph -> G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) |
| 174 | 173 | adantr | |- ( ( ph /\ y e. ( A (,) B ) ) -> G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) |
| 175 | eqid | |- U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |
|
| 176 | 175 104 | cnprest | |- ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. Top /\ ( A (,) B ) C_ U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) /\ ( y e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A (,) B ) ) /\ G : U. ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) --> CC ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( G |` ( A (,) B ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
| 177 | 128 136 171 174 176 | syl22anc | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) <-> ( G |` ( A (,) B ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) |
| 178 | 125 177 | mpbird | |- ( ( ph /\ y e. ( A (,) B ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 179 | elpri | |- ( y e. { A , B } -> ( y = A \/ y = B ) ) |
|
| 180 | iftrue | |- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
|
| 181 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 182 | 23 25 27 181 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 183 | 2 180 182 8 | fvmptd3 | |- ( ph -> ( G ` A ) = R ) |
| 184 | 97 | eqcomd | |- ( ph -> ( x e. ( A (,) B ) |-> ( F ` x ) ) = F ) |
| 185 | 96 184 | eqtr2d | |- ( ph -> F = ( G |` ( A (,) B ) ) ) |
| 186 | 185 | oveq1d | |- ( ph -> ( F limCC A ) = ( ( G |` ( A (,) B ) ) limCC A ) ) |
| 187 | 8 186 | eleqtrd | |- ( ph -> R e. ( ( G |` ( A (,) B ) ) limCC A ) ) |
| 188 | 3 4 5 42 | limciccioolb | |- ( ph -> ( ( G |` ( A (,) B ) ) limCC A ) = ( G limCC A ) ) |
| 189 | 187 188 | eleqtrd | |- ( ph -> R e. ( G limCC A ) ) |
| 190 | 183 189 | eqeltrd | |- ( ph -> ( G ` A ) e. ( G limCC A ) ) |
| 191 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) |
|
| 192 | 101 191 | cnplimc | |- ( ( ( A [,] B ) C_ CC /\ A e. ( A [,] B ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` A ) e. ( G limCC A ) ) ) ) |
| 193 | 132 182 192 | syl2anc | |- ( ph -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` A ) e. ( G limCC A ) ) ) ) |
| 194 | 42 190 193 | mpbir2and | |- ( ph -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) ) |
| 195 | 194 | adantr | |- ( ( ph /\ y = A ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) ) |
| 196 | fveq2 | |- ( y = A -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) ) |
|
| 197 | 196 | eqcomd | |- ( y = A -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 198 | 197 | adantl | |- ( ( ph /\ y = A ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` A ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 199 | 195 198 | eleqtrd | |- ( ( ph /\ y = A ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 200 | 180 | adantl | |- ( ( x = B /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
| 201 | eqtr2 | |- ( ( x = B /\ x = A ) -> B = A ) |
|
| 202 | iftrue | |- ( B = A -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) = R ) |
|
| 203 | 202 | eqcomd | |- ( B = A -> R = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
| 204 | 201 203 | syl | |- ( ( x = B /\ x = A ) -> R = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
| 205 | 200 204 | eqtrd | |- ( ( x = B /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
| 206 | iffalse | |- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
|
| 207 | 206 | adantl | |- ( ( x = B /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 208 | iftrue | |- ( x = B -> if ( x = B , L , ( F ` x ) ) = L ) |
|
| 209 | 208 | adantr | |- ( ( x = B /\ -. x = A ) -> if ( x = B , L , ( F ` x ) ) = L ) |
| 210 | df-ne | |- ( x =/= A <-> -. x = A ) |
|
| 211 | pm13.18 | |- ( ( x = B /\ x =/= A ) -> B =/= A ) |
|
| 212 | 210 211 | sylan2br | |- ( ( x = B /\ -. x = A ) -> B =/= A ) |
| 213 | 212 | neneqd | |- ( ( x = B /\ -. x = A ) -> -. B = A ) |
| 214 | 213 | iffalsed | |- ( ( x = B /\ -. x = A ) -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) = if ( B = B , L , ( F ` B ) ) ) |
| 215 | eqid | |- B = B |
|
| 216 | 215 | iftruei | |- if ( B = B , L , ( F ` B ) ) = L |
| 217 | 214 216 | eqtr2di | |- ( ( x = B /\ -. x = A ) -> L = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
| 218 | 207 209 217 | 3eqtrd | |- ( ( x = B /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
| 219 | 205 218 | pm2.61dan | |- ( x = B -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
| 220 | 4 | leidd | |- ( ph -> B <_ B ) |
| 221 | 3 4 4 27 220 | eliccd | |- ( ph -> B e. ( A [,] B ) ) |
| 222 | 216 13 | eqeltrid | |- ( ph -> if ( B = B , L , ( F ` B ) ) e. CC ) |
| 223 | 10 222 | ifcld | |- ( ph -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) e. CC ) |
| 224 | 2 219 221 223 | fvmptd3 | |- ( ph -> ( G ` B ) = if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) ) |
| 225 | 3 5 | gtned | |- ( ph -> B =/= A ) |
| 226 | 225 | neneqd | |- ( ph -> -. B = A ) |
| 227 | 226 | iffalsed | |- ( ph -> if ( B = A , R , if ( B = B , L , ( F ` B ) ) ) = if ( B = B , L , ( F ` B ) ) ) |
| 228 | 216 | a1i | |- ( ph -> if ( B = B , L , ( F ` B ) ) = L ) |
| 229 | 224 227 228 | 3eqtrd | |- ( ph -> ( G ` B ) = L ) |
| 230 | 185 | oveq1d | |- ( ph -> ( F limCC B ) = ( ( G |` ( A (,) B ) ) limCC B ) ) |
| 231 | 7 230 | eleqtrd | |- ( ph -> L e. ( ( G |` ( A (,) B ) ) limCC B ) ) |
| 232 | 3 4 5 42 | limcicciooub | |- ( ph -> ( ( G |` ( A (,) B ) ) limCC B ) = ( G limCC B ) ) |
| 233 | 231 232 | eleqtrd | |- ( ph -> L e. ( G limCC B ) ) |
| 234 | 229 233 | eqeltrd | |- ( ph -> ( G ` B ) e. ( G limCC B ) ) |
| 235 | 101 191 | cnplimc | |- ( ( ( A [,] B ) C_ CC /\ B e. ( A [,] B ) ) -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` B ) e. ( G limCC B ) ) ) ) |
| 236 | 132 221 235 | syl2anc | |- ( ph -> ( G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) <-> ( G : ( A [,] B ) --> CC /\ ( G ` B ) e. ( G limCC B ) ) ) ) |
| 237 | 42 234 236 | mpbir2and | |- ( ph -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) ) |
| 238 | 237 | adantr | |- ( ( ph /\ y = B ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) ) |
| 239 | fveq2 | |- ( y = B -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) ) |
|
| 240 | 239 | eqcomd | |- ( y = B -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 241 | 240 | adantl | |- ( ( ph /\ y = B ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` B ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 242 | 238 241 | eleqtrd | |- ( ( ph /\ y = B ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 243 | 199 242 | jaodan | |- ( ( ph /\ ( y = A \/ y = B ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 244 | 179 243 | sylan2 | |- ( ( ph /\ y e. { A , B } ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 245 | 178 244 | jaodan | |- ( ( ph /\ ( y e. ( A (,) B ) \/ y e. { A , B } ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 246 | 47 245 | syldan | |- ( ( ph /\ y e. ( A [,] B ) ) -> G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 247 | 246 | ralrimiva | |- ( ph -> A. y e. ( A [,] B ) G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) |
| 248 | 101 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 249 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A [,] B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
|
| 250 | 248 132 249 | sylancr | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
| 251 | cncnp | |- ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( G e. ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( G : ( A [,] B ) --> CC /\ A. y e. ( A [,] B ) G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) ) |
|
| 252 | 250 248 251 | sylancl | |- ( ph -> ( G e. ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( G : ( A [,] B ) --> CC /\ A. y e. ( A [,] B ) G e. ( ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) CnP ( TopOpen ` CCfld ) ) ` y ) ) ) ) |
| 253 | 42 247 252 | mpbir2and | |- ( ph -> G e. ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 254 | 101 191 107 | cncfcn | |- ( ( ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 255 | 132 100 254 | sylancl | |- ( ph -> ( ( A [,] B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 256 | 253 255 | eleqtrrd | |- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |