This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioo4g | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooxr | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) | |
| 2 | elioore | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → 𝐶 ∈ ℝ ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) ) |
| 4 | df-3an | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) ) |
| 6 | eliooord | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) | |
| 7 | 5 6 | jca | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 8 | rexr | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* ) | |
| 9 | 8 | 3anim3i | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
| 10 | 9 | anim1i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |
| 11 | elioo3g | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 13 | 7 12 | impbii | ⊢ ( 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 < 𝐶 ∧ 𝐶 < 𝐵 ) ) ) |