This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcicciooub.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| limcicciooub.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| limcicciooub.3 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| limcicciooub.4 | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | ||
| Assertion | limcicciooub | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcicciooub.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | limcicciooub.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | limcicciooub.3 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | limcicciooub.4 | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 5 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 7 | 1 2 | iccssred | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 8 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 9 | 7 8 | sstrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 10 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 11 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) | |
| 12 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
| 14 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 15 | iocssre | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) | |
| 16 | 14 2 15 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ℝ ) |
| 17 | difssd | ⊢ ( 𝜑 → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ) | |
| 18 | 16 17 | unssd | ⊢ ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
| 19 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 20 | 18 19 | sseqtrdi | ⊢ ( 𝜑 → ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ∪ ( topGen ‘ ran (,) ) ) |
| 21 | elioore | ⊢ ( 𝑥 ∈ ( 𝐴 (,) +∞ ) → 𝑥 ∈ ℝ ) | |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) |
| 23 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ( 𝐴 (,) +∞ ) ) | |
| 24 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 25 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 26 | elioo2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) ) | |
| 27 | 24 25 26 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) ) |
| 28 | 23 27 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 29 | 28 | simp2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝐴 < 𝑥 ) |
| 30 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ≤ 𝐵 ) | |
| 31 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 32 | elioc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 33 | 24 31 32 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 34 | 22 29 30 33 | mpbir3and | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ) |
| 35 | 34 | orcd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 36 | 21 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ℝ ) |
| 37 | 3mix3 | ⊢ ( ¬ 𝑥 ≤ 𝐵 → ( ¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ 𝐵 ) ) | |
| 38 | 3ianor | ⊢ ( ¬ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ↔ ( ¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ 𝐵 ) ) | |
| 39 | 37 38 | sylibr | ⊢ ( ¬ 𝑥 ≤ 𝐵 → ¬ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 40 | 39 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → ¬ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 41 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) |
| 42 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 43 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 44 | 41 42 43 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 45 | 40 44 | mtbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 46 | 36 45 | eldifd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) |
| 47 | 46 | olcd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) ∧ ¬ 𝑥 ≤ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 48 | 35 47 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) → ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 49 | elun | ⊢ ( 𝑥 ∈ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ↔ ( 𝑥 ∈ ( 𝐴 (,] 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 50 | 48 49 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) +∞ ) ) → 𝑥 ∈ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 51 | 50 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) +∞ ) 𝑥 ∈ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 52 | dfss3 | ⊢ ( ( 𝐴 (,) +∞ ) ⊆ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ↔ ∀ 𝑥 ∈ ( 𝐴 (,) +∞ ) 𝑥 ∈ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 53 | 51 52 | sylibr | ⊢ ( 𝜑 → ( 𝐴 (,) +∞ ) ⊆ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 54 | eqid | ⊢ ∪ ( topGen ‘ ran (,) ) = ∪ ( topGen ‘ ran (,) ) | |
| 55 | 54 | ntrss | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ∪ ( topGen ‘ ran (,) ) ∧ ( 𝐴 (,) +∞ ) ⊆ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 56 | 13 20 53 55 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 57 | 25 | a1i | ⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 58 | 2 | ltpnfd | ⊢ ( 𝜑 → 𝐵 < +∞ ) |
| 59 | 14 57 2 3 58 | eliood | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 (,) +∞ ) ) |
| 60 | iooretop | ⊢ ( 𝐴 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) | |
| 61 | isopn3i | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) = ( 𝐴 (,) +∞ ) ) | |
| 62 | 13 60 61 | sylancl | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) = ( 𝐴 (,) +∞ ) ) |
| 63 | 59 62 | eleqtrrd | ⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) +∞ ) ) ) |
| 64 | 56 63 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 65 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 66 | 1 2 3 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 67 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 68 | 14 65 66 67 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 69 | 64 68 | elind | ⊢ ( 𝜑 → 𝐵 ∈ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 70 | iocssicc | ⊢ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 71 | 70 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 72 | eqid | ⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 73 | 19 72 | restntr | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐴 (,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 74 | 13 7 71 73 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 (,] 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 75 | 69 74 | eleqtrrd | ⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) ) |
| 76 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 77 | 10 76 | rerest | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 78 | 7 77 | syl | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 79 | 78 | eqcomd | ⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 80 | 79 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 81 | 80 | fveq1d | ⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) ) |
| 82 | 75 81 | eleqtrd | ⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) ) |
| 83 | 68 | snssd | ⊢ ( 𝜑 → { 𝐵 } ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 84 | ssequn2 | ⊢ ( { 𝐵 } ⊆ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 85 | 83 84 | sylib | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 86 | 85 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) |
| 87 | 86 | oveq2d | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 88 | 87 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) ) ) |
| 89 | ioounsn | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) | |
| 90 | 14 65 3 89 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 (,] 𝐵 ) ) |
| 91 | 90 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 (,] 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 92 | 88 91 | fveq12d | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 (,] 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 93 | 82 92 | eleqtrd | ⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 94 | 4 6 9 10 11 93 | limcres | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |