This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function F on an open interval ( A (,) B ) can be extended to a continuous function G on the corresponding closed interval, if it has a finite right limit R in A and a finite left limit L in B . F can be complex-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfiooicc.x | ⊢ Ⅎ 𝑥 𝜑 | |
| cncfiooicc.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) | ||
| cncfiooicc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| cncfiooicc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| cncfiooicc.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | ||
| cncfiooicc.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) | ||
| cncfiooicc.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) | ||
| Assertion | cncfiooicc | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfiooicc.x | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | cncfiooicc.g | ⊢ 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 3 | cncfiooicc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 4 | cncfiooicc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 5 | cncfiooicc.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | |
| 6 | cncfiooicc.l | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) | |
| 7 | cncfiooicc.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) | |
| 8 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝐴 < 𝐵 ) | |
| 9 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 10 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 12 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 13 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 14 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
| 15 | 8 2 9 10 11 12 13 14 | cncfiooicclem1 | ⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 16 | limccl | ⊢ ( 𝐹 limℂ 𝐴 ) ⊆ ℂ | |
| 17 | 16 7 | sselid | ⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 18 | 17 | snssd | ⊢ ( 𝜑 → { 𝑅 } ⊆ ℂ ) |
| 19 | ssid | ⊢ ℂ ⊆ ℂ | |
| 20 | 19 | a1i | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 21 | cncfss | ⊢ ( ( { 𝑅 } ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( { 𝐴 } –cn→ { 𝑅 } ) ⊆ ( { 𝐴 } –cn→ ℂ ) ) | |
| 22 | 18 20 21 | syl2anc | ⊢ ( 𝜑 → ( { 𝐴 } –cn→ { 𝑅 } ) ⊆ ( { 𝐴 } –cn→ ℂ ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( { 𝐴 } –cn→ { 𝑅 } ) ⊆ ( { 𝐴 } –cn→ ℂ ) ) |
| 24 | 3 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 25 | iccid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
| 27 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 [,] 𝐴 ) = ( 𝐴 [,] 𝐵 ) ) | |
| 28 | 26 27 | sylan9req | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → { 𝐴 } = ( 𝐴 [,] 𝐵 ) ) |
| 29 | 28 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐴 [,] 𝐵 ) = { 𝐴 } ) |
| 30 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 31 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 [,] 𝐵 ) = { 𝐴 } ) |
| 32 | 30 31 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ { 𝐴 } ) |
| 33 | elsni | ⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 = 𝐴 ) | |
| 34 | 32 33 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 = 𝐴 ) |
| 35 | 34 | iftrued | ⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) = 𝑅 ) |
| 36 | 29 35 | mpteq12dva | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝐴 } ↦ 𝑅 ) ) |
| 37 | 2 36 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 = ( 𝑥 ∈ { 𝐴 } ↦ 𝑅 ) ) |
| 38 | 3 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ ℂ ) |
| 40 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝑅 ∈ ℂ ) |
| 41 | cncfdmsn | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝑅 ) ∈ ( { 𝐴 } –cn→ { 𝑅 } ) ) | |
| 42 | 39 40 41 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑥 ∈ { 𝐴 } ↦ 𝑅 ) ∈ ( { 𝐴 } –cn→ { 𝑅 } ) ) |
| 43 | 37 42 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ ( { 𝐴 } –cn→ { 𝑅 } ) ) |
| 44 | 23 43 | sseldd | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ ( { 𝐴 } –cn→ ℂ ) ) |
| 45 | 28 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( { 𝐴 } –cn→ ℂ ) = ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 46 | 44 45 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 47 | 46 | adantlr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 48 | simpll | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝜑 ) | |
| 49 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 50 | 49 | biimpi | ⊢ ( 𝐵 = 𝐴 → 𝐴 = 𝐵 ) |
| 51 | 50 | con3i | ⊢ ( ¬ 𝐴 = 𝐵 → ¬ 𝐵 = 𝐴 ) |
| 52 | 51 | adantl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐵 = 𝐴 ) |
| 53 | simplr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → ¬ 𝐴 < 𝐵 ) | |
| 54 | pm4.56 | ⊢ ( ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵 ) ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ) | |
| 55 | 54 | biimpi | ⊢ ( ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝐴 < 𝐵 ) → ¬ ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ) |
| 56 | 52 53 55 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → ¬ ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ) |
| 57 | 48 4 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 58 | 48 3 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐴 ∈ ℝ ) |
| 59 | 57 58 | lttrid | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → ( 𝐵 < 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ) ) |
| 60 | 56 59 | mpbird | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐵 < 𝐴 ) |
| 61 | 0ss | ⊢ ∅ ⊆ ℂ | |
| 62 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 63 | 62 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 64 | rest0 | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ∅ ) = { ∅ } ) | |
| 65 | 63 64 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ∅ ) = { ∅ } |
| 66 | 65 | eqcomi | ⊢ { ∅ } = ( ( TopOpen ‘ ℂfld ) ↾t ∅ ) |
| 67 | 62 66 66 | cncfcn | ⊢ ( ( ∅ ⊆ ℂ ∧ ∅ ⊆ ℂ ) → ( ∅ –cn→ ∅ ) = ( { ∅ } Cn { ∅ } ) ) |
| 68 | 61 61 67 | mp2an | ⊢ ( ∅ –cn→ ∅ ) = ( { ∅ } Cn { ∅ } ) |
| 69 | cncfss | ⊢ ( ( ∅ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ∅ –cn→ ∅ ) ⊆ ( ∅ –cn→ ℂ ) ) | |
| 70 | 61 19 69 | mp2an | ⊢ ( ∅ –cn→ ∅ ) ⊆ ( ∅ –cn→ ℂ ) |
| 71 | 68 70 | eqsstrri | ⊢ ( { ∅ } Cn { ∅ } ) ⊆ ( ∅ –cn→ ℂ ) |
| 72 | 2 | a1i | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 73 | simpr | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → 𝐵 < 𝐴 ) | |
| 74 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 75 | 4 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 76 | 75 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 77 | icc0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) | |
| 78 | 74 76 77 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 79 | 73 78 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
| 80 | 79 | mpteq1d | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ∅ ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 81 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ∅ | |
| 82 | 81 | a1i | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( 𝑥 ∈ ∅ ↦ if ( 𝑥 = 𝐴 , 𝑅 , if ( 𝑥 = 𝐵 , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) = ∅ ) |
| 83 | 72 80 82 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → 𝐺 = ∅ ) |
| 84 | 0cnf | ⊢ ∅ ∈ ( { ∅ } Cn { ∅ } ) | |
| 85 | 83 84 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → 𝐺 ∈ ( { ∅ } Cn { ∅ } ) ) |
| 86 | 71 85 | sselid | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → 𝐺 ∈ ( ∅ –cn→ ℂ ) ) |
| 87 | 79 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ∅ = ( 𝐴 [,] 𝐵 ) ) |
| 88 | 87 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( ∅ –cn→ ℂ ) = ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 89 | 86 88 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 90 | 48 60 89 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 91 | 47 90 | pm2.61dan | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 92 | 15 91 | pm2.61dan | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |