This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interior of an interval in the standard topology on RR is the open interval itself. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioontr | ⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooretop | ⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) | |
| 2 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 3 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 4 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 5 | 4 | isopn3 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) ) |
| 6 | 2 3 5 | mp2an | ⊢ ( ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 7 | 1 6 | mpbi | ⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) |