This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restid.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | restid | ⊢ ( 𝐽 ∈ 𝑉 → ( 𝐽 ↾t 𝑋 ) = 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restid.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | uniexg | ⊢ ( 𝐽 ∈ 𝑉 → ∪ 𝐽 ∈ V ) | |
| 3 | 1 2 | eqeltrid | ⊢ ( 𝐽 ∈ 𝑉 → 𝑋 ∈ V ) |
| 4 | 1 | eqimss2i | ⊢ ∪ 𝐽 ⊆ 𝑋 |
| 5 | sspwuni | ⊢ ( 𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋 ) | |
| 6 | 4 5 | mpbir | ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 7 | restid2 | ⊢ ( ( 𝑋 ∈ V ∧ 𝐽 ⊆ 𝒫 𝑋 ) → ( 𝐽 ↾t 𝑋 ) = 𝐽 ) | |
| 8 | 3 6 7 | sylancl | ⊢ ( 𝐽 ∈ 𝑉 → ( 𝐽 ↾t 𝑋 ) = 𝐽 ) |