This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ntrss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | sscon | ⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) |
| 4 | difss | ⊢ ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 | |
| 5 | 3 4 | jctil | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) ) |
| 6 | 1 | clsss | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) |
| 7 | 6 | 3expb | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑋 ∖ 𝑇 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑆 ) ⊆ ( 𝑋 ∖ 𝑇 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) |
| 8 | 5 7 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) |
| 9 | 8 | sscond | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) ⊆ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
| 10 | sstr2 | ⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋 ) ) | |
| 11 | 10 | impcom | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
| 12 | 1 | ntrval2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) ) |
| 13 | 11 12 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑇 ) ) ) ) |
| 14 | 1 | ntrval2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
| 15 | 14 | adantrr | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝑆 ) ) ) ) |
| 16 | 9 13 15 | 3sstr4d | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 17 | 16 | 3impb | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |