This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is continuous at B iff its limit at B equals the value of the function there. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnplimc.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| cnplimc.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) | ||
| Assertion | cnplimc | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnplimc.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 2 | cnplimc.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) | |
| 3 | 1 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 4 | simpl | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → 𝐴 ⊆ ℂ ) | |
| 5 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( 𝐾 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) | |
| 6 | 3 4 5 | sylancr | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐾 ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 7 | 2 6 | eqeltrid | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) |
| 8 | cnpf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 9 | 8 | 3expia | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐹 : 𝐴 ⟶ ℂ ) ) |
| 10 | 7 3 9 | sylancl | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐹 : 𝐴 ⟶ ℂ ) ) |
| 11 | 10 | pm4.71rd | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) ) |
| 12 | simpr | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 13 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐵 ∈ 𝐴 ) | |
| 14 | 13 | snssd | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → { 𝐵 } ⊆ 𝐴 ) |
| 15 | ssequn2 | ⊢ ( { 𝐵 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝐵 } ) = 𝐴 ) | |
| 16 | 14 15 | sylib | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐴 ∪ { 𝐵 } ) = 𝐴 ) |
| 17 | 16 | feq2d | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ↔ 𝐹 : 𝐴 ⟶ ℂ ) ) |
| 18 | 12 17 | mpbird | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
| 19 | 18 | feqmptd | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 | 16 | oveq2d | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t 𝐴 ) ) |
| 21 | 2 20 | eqtr4id | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ) |
| 22 | 21 | oveq1d | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐽 CnP 𝐾 ) = ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ) |
| 23 | 22 | fveq1d | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) = ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
| 24 | 19 23 | eleq12d | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 25 | eqid | ⊢ ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) | |
| 26 | ifid | ⊢ if ( 𝑥 = 𝐵 , ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) | |
| 27 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 28 | 27 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ 𝑥 = 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 29 | 28 | ifeq1da | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) → if ( 𝑥 = 𝐵 , ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) ) = if ( 𝑥 = 𝐵 , ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝑥 ) ) ) |
| 30 | 26 29 | eqtr3id | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) → ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 𝐵 , ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 | 30 | mpteq2ia | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑥 = 𝐵 , ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝑥 ) ) ) |
| 32 | simpll | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐴 ⊆ ℂ ) | |
| 33 | 32 13 | sseldd | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐵 ∈ ℂ ) |
| 34 | 25 1 31 12 32 33 | ellimc | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
| 35 | 24 34 | bitr4d | ⊢ ( ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
| 36 | 35 | pm5.32da | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
| 37 | 11 36 | bitrd | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |