This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limccl | ⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcrcl | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 2 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( dom 𝐹 ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( dom 𝐹 ∪ { 𝐵 } ) ) | |
| 3 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 4 | 2 3 | limcfval | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( dom 𝐹 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( dom 𝐹 ∪ { 𝐵 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( ( 𝐹 limℂ 𝐵 ) = { 𝑦 ∣ ( 𝑧 ∈ ( dom 𝐹 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑦 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( dom 𝐹 ∪ { 𝐵 } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐵 ) } ∧ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) ) |
| 6 | 5 | simprd | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 limℂ 𝐵 ) ⊆ ℂ ) |
| 7 | id | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) | |
| 8 | 6 7 | sseldd | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ℂ ) |
| 9 | 8 | ssriv | ⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |