This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limciccioolb.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| limciccioolb.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| limciccioolb.3 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| limciccioolb.4 | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | ||
| Assertion | limciccioolb | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) = ( 𝐹 limℂ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limciccioolb.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | limciccioolb.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | limciccioolb.3 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | limciccioolb.4 | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 5 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 7 | 1 2 | iccssred | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 8 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 9 | 7 8 | sstrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 10 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 11 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) | |
| 12 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
| 14 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 15 | icossre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) | |
| 16 | 1 14 15 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) |
| 17 | difssd | ⊢ ( 𝜑 → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ) | |
| 18 | 16 17 | unssd | ⊢ ( 𝜑 → ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
| 19 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 20 | 18 19 | sseqtrdi | ⊢ ( 𝜑 → ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ∪ ( topGen ‘ ran (,) ) ) |
| 21 | elioore | ⊢ ( 𝑥 ∈ ( -∞ (,) 𝐵 ) → 𝑥 ∈ ℝ ) | |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
| 23 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝐴 ≤ 𝑥 ) | |
| 24 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → 𝑥 ∈ ( -∞ (,) 𝐵 ) ) | |
| 25 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 26 | 25 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → -∞ ∈ ℝ* ) |
| 27 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 28 | elioo2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) | |
| 29 | 26 27 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝑥 ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 30 | 24 29 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 31 | 30 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → 𝑥 < 𝐵 ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝑥 < 𝐵 ) |
| 33 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝐴 ∈ ℝ ) |
| 34 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝐵 ∈ ℝ* ) |
| 35 | elico2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) | |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 37 | 22 23 32 36 | mpbir3and | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 38 | 37 | orcd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 39 | 21 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
| 40 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ¬ 𝐴 ≤ 𝑥 ) | |
| 41 | 40 | intnanrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ¬ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 42 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝐴 ∈ ℝ* ) |
| 44 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝐵 ∈ ℝ* ) |
| 45 | 39 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ℝ* ) |
| 46 | elicc4 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 47 | 43 44 45 46 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 48 | 41 47 | mtbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 49 | 39 48 | eldifd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) |
| 50 | 49 | olcd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 51 | 38 50 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 52 | elun | ⊢ ( 𝑥 ∈ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ↔ ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 53 | 51 52 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → 𝑥 ∈ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 54 | 53 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( -∞ (,) 𝐵 ) 𝑥 ∈ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 55 | dfss3 | ⊢ ( ( -∞ (,) 𝐵 ) ⊆ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ↔ ∀ 𝑥 ∈ ( -∞ (,) 𝐵 ) 𝑥 ∈ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) | |
| 56 | 54 55 | sylibr | ⊢ ( 𝜑 → ( -∞ (,) 𝐵 ) ⊆ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 57 | eqid | ⊢ ∪ ( topGen ‘ ran (,) ) = ∪ ( topGen ‘ ran (,) ) | |
| 58 | 57 | ntrss | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ∪ ( topGen ‘ ran (,) ) ∧ ( -∞ (,) 𝐵 ) ⊆ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 59 | 13 20 56 58 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 60 | 25 | a1i | ⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 61 | 1 | mnfltd | ⊢ ( 𝜑 → -∞ < 𝐴 ) |
| 62 | 60 14 1 61 3 | eliood | ⊢ ( 𝜑 → 𝐴 ∈ ( -∞ (,) 𝐵 ) ) |
| 63 | iooretop | ⊢ ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) | |
| 64 | 63 | a1i | ⊢ ( 𝜑 → ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
| 65 | isopn3i | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) = ( -∞ (,) 𝐵 ) ) | |
| 66 | 13 64 65 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) = ( -∞ (,) 𝐵 ) ) |
| 67 | 62 66 | eleqtrrd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) ) |
| 68 | 59 67 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
| 69 | 1 | leidd | ⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
| 70 | 1 2 3 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 71 | 1 2 1 69 70 | eliccd | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 72 | 68 71 | elind | ⊢ ( 𝜑 → 𝐴 ∈ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 73 | icossicc | ⊢ ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 74 | 73 | a1i | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 75 | eqid | ⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 76 | 19 75 | restntr | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 77 | 13 7 74 76 | syl3anc | ⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
| 78 | 72 77 | eleqtrrd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) ) |
| 79 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 80 | 10 79 | rerest | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 81 | 7 80 | syl | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 82 | 81 | eqcomd | ⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 83 | 82 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
| 84 | 83 | fveq1d | ⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) ) |
| 85 | 78 84 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) ) |
| 86 | 71 | snssd | ⊢ ( 𝜑 → { 𝐴 } ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 87 | ssequn2 | ⊢ ( { 𝐴 } ⊆ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 88 | 86 87 | sylib | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 89 | 88 | eqcomd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) |
| 90 | 89 | oveq2d | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) ) |
| 91 | 90 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) ) ) |
| 92 | uncom | ⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) | |
| 93 | snunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) | |
| 94 | 42 14 3 93 | syl3anc | ⊢ ( 𝜑 → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 95 | 92 94 | eqtr2id | ⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) |
| 96 | 91 95 | fveq12d | ⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) |
| 97 | 85 96 | eleqtrd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) |
| 98 | 4 6 9 10 11 97 | limcres | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) = ( 𝐹 limℂ 𝐴 ) ) |