This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 2 | xrleloe | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 4 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 5 | 4 | uneq2i | ⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( 𝐴 (,) 𝐵 ) ∪ ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 6 | unass | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ∪ { 𝐵 } ) = ( ( 𝐴 (,) 𝐵 ) ∪ ( { 𝐴 } ∪ { 𝐵 } ) ) | |
| 7 | 5 6 | eqtr4i | ⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ∪ { 𝐵 } ) |
| 8 | uncom | ⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) | |
| 9 | snunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) | |
| 10 | 8 9 | eqtrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
| 11 | 10 | uneq1d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ∪ { 𝐵 } ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 12 | 7 11 | eqtrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 14 | 13 | 3adantl3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) ) |
| 15 | snunico | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 16 | 15 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 [,) 𝐵 ) ∪ { 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 17 | 14 16 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < 𝐵 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
| 19 | iccid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) | |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
| 21 | 20 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → { 𝐴 } = ( 𝐴 [,] 𝐴 ) ) |
| 22 | uncom | ⊢ ( ∅ ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ∅ ) | |
| 23 | un0 | ⊢ ( { 𝐴 } ∪ ∅ ) = { 𝐴 } | |
| 24 | 22 23 | eqtri | ⊢ ( ∅ ∪ { 𝐴 } ) = { 𝐴 } |
| 25 | iooid | ⊢ ( 𝐴 (,) 𝐴 ) = ∅ | |
| 26 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 (,) 𝐴 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 27 | 25 26 | eqtr3id | ⊢ ( 𝐴 = 𝐵 → ∅ = ( 𝐴 (,) 𝐵 ) ) |
| 28 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
| 29 | preq2 | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } ) | |
| 30 | 28 29 | eqtrid | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐴 , 𝐵 } ) |
| 31 | 27 30 | uneq12d | ⊢ ( 𝐴 = 𝐵 → ( ∅ ∪ { 𝐴 } ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
| 32 | 24 31 | eqtr3id | ⊢ ( 𝐴 = 𝐵 → { 𝐴 } = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) |
| 33 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 [,] 𝐴 ) = ( 𝐴 [,] 𝐵 ) ) | |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝐴 = 𝐵 → ( { 𝐴 } = ( 𝐴 [,] 𝐴 ) ↔ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
| 35 | 21 34 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
| 36 | 18 35 | jaod | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
| 37 | 3 36 | sylbid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) ) |
| 38 | 1 37 | mpd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |