This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function is an inverse to tan . (Contributed by Mario Carneiro, 5-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atantan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arctan ‘ ( tan ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ 𝐴 ) ≠ 0 ) | |
| 2 | atandmtan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ dom arctan ) | |
| 3 | 1 2 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( tan ‘ 𝐴 ) ∈ dom arctan ) |
| 4 | atanval | ⊢ ( ( tan ‘ 𝐴 ) ∈ dom arctan → ( arctan ‘ ( tan ‘ 𝐴 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arctan ‘ ( tan ‘ 𝐴 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | ax-icn | ⊢ i ∈ ℂ | |
| 8 | tancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ ℂ ) | |
| 9 | 1 8 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( tan ‘ 𝐴 ) ∈ ℂ ) |
| 10 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( tan ‘ 𝐴 ) ∈ ℂ ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) | |
| 11 | 7 9 10 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) |
| 12 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 13 | 6 11 12 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 14 | atandm2 | ⊢ ( ( tan ‘ 𝐴 ) ∈ dom arctan ↔ ( ( tan ‘ 𝐴 ) ∈ ℂ ∧ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ∧ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) ) | |
| 15 | 3 14 | sylib | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( tan ‘ 𝐴 ) ∈ ℂ ∧ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ∧ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) ) |
| 16 | 15 | simp3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) |
| 17 | 13 16 | logcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 18 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ) | |
| 19 | 6 11 18 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 20 | 15 | simp2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) |
| 21 | 19 20 | logcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 22 | 17 21 | negsubdi2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) |
| 23 | efsub | ⊢ ( ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℂ ∧ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) = ( ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) | |
| 24 | 17 21 23 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) = ( ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) |
| 25 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 27 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 29 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) | |
| 30 | 7 28 29 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
| 31 | 26 30 26 1 | divdird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) + ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) ) |
| 32 | 26 1 | dividd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = 1 ) |
| 33 | 7 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → i ∈ ℂ ) |
| 34 | 33 28 26 1 | divassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( i · ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) ) |
| 35 | tanval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) | |
| 36 | 1 35 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( tan ‘ 𝐴 ) ) = ( i · ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) ) |
| 38 | 34 37 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( i · ( tan ‘ 𝐴 ) ) ) |
| 39 | 32 38 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) + ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) |
| 40 | 31 39 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) = ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) |
| 41 | efival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) | |
| 42 | 41 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 43 | 42 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) ) |
| 44 | eflog | ⊢ ( ( ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ∧ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) → ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) | |
| 45 | 13 16 44 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) |
| 46 | 40 43 45 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) |
| 47 | 26 30 26 1 | divsubdird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) − ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) ) |
| 48 | 32 38 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) − ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) |
| 49 | 47 48 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) = ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) |
| 50 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 51 | 50 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - 𝐴 ∈ ℂ ) |
| 52 | efival | ⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) ) | |
| 53 | 51 52 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) ) |
| 54 | cosneg | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) | |
| 55 | 54 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
| 56 | sinneg | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) | |
| 57 | 56 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) |
| 58 | 57 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( sin ‘ - 𝐴 ) ) = ( i · - ( sin ‘ 𝐴 ) ) ) |
| 59 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) | |
| 60 | 7 28 59 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
| 61 | 58 60 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( sin ‘ - 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
| 62 | 55 61 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 63 | 53 62 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 64 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 𝐴 ∈ ℂ ) | |
| 65 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) | |
| 66 | 7 64 65 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 67 | 66 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · - 𝐴 ) ) = ( exp ‘ - ( i · 𝐴 ) ) ) |
| 68 | 26 30 | negsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 69 | 63 67 68 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ - ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 70 | 69 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) ) |
| 71 | eflog | ⊢ ( ( ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ∧ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) → ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) | |
| 72 | 19 20 71 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) |
| 73 | 49 70 72 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) |
| 74 | 46 73 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) / ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) |
| 75 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 76 | 7 64 75 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · 𝐴 ) ∈ ℂ ) |
| 77 | efcl | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) | |
| 78 | 76 77 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 79 | 76 | negcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - ( i · 𝐴 ) ∈ ℂ ) |
| 80 | efcl | ⊢ ( - ( i · 𝐴 ) ∈ ℂ → ( exp ‘ - ( i · 𝐴 ) ) ∈ ℂ ) | |
| 81 | 79 80 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ - ( i · 𝐴 ) ) ∈ ℂ ) |
| 82 | efne0 | ⊢ ( - ( i · 𝐴 ) ∈ ℂ → ( exp ‘ - ( i · 𝐴 ) ) ≠ 0 ) | |
| 83 | 79 82 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ - ( i · 𝐴 ) ) ≠ 0 ) |
| 84 | 78 81 26 83 1 | divcan7d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) / ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) / ( exp ‘ - ( i · 𝐴 ) ) ) ) |
| 85 | efsub | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ - ( i · 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) / ( exp ‘ - ( i · 𝐴 ) ) ) ) | |
| 86 | 76 79 85 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) / ( exp ‘ - ( i · 𝐴 ) ) ) ) |
| 87 | 76 76 | subnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 88 | 76 | 2timesd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 89 | 87 88 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) = ( 2 · ( i · 𝐴 ) ) ) |
| 90 | 89 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) = ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) |
| 91 | 84 86 90 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) / ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) |
| 92 | 24 74 91 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) = ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) |
| 93 | 92 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) = ( log ‘ ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) ) |
| 94 | 64 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → 𝐴 ∈ ℂ ) |
| 95 | 94 | renegd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
| 96 | 94 | recld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 97 | 96 | renegcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → - ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 98 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ 𝐴 ) < 0 ) | |
| 99 | 96 | lt0neg1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ( ℜ ‘ 𝐴 ) < 0 ↔ 0 < - ( ℜ ‘ 𝐴 ) ) ) |
| 100 | 98 99 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → 0 < - ( ℜ ‘ 𝐴 ) ) |
| 101 | eliooord | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) | |
| 102 | 101 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
| 103 | 102 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ) |
| 104 | 103 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ) |
| 105 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 106 | ltnegcon1 | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ↔ - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) | |
| 107 | 105 96 106 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ↔ - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
| 108 | 104 107 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) |
| 109 | 0xr | ⊢ 0 ∈ ℝ* | |
| 110 | 105 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 111 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( - ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( - ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < - ( ℜ ‘ 𝐴 ) ∧ - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) ) | |
| 112 | 109 110 111 | mp2an | ⊢ ( - ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( - ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < - ( ℜ ‘ 𝐴 ) ∧ - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
| 113 | 97 100 108 112 | syl3anbrc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → - ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
| 114 | 95 113 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ - 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
| 115 | tanregt0 | ⊢ ( ( - 𝐴 ∈ ℂ ∧ ( ℜ ‘ - 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( ℜ ‘ ( tan ‘ - 𝐴 ) ) ) | |
| 116 | 51 114 115 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → 0 < ( ℜ ‘ ( tan ‘ - 𝐴 ) ) ) |
| 117 | tanneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) | |
| 118 | 1 117 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |
| 119 | 118 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |
| 120 | 119 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ - 𝐴 ) ) = ( ℜ ‘ - ( tan ‘ 𝐴 ) ) ) |
| 121 | 9 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( tan ‘ 𝐴 ) ∈ ℂ ) |
| 122 | 121 | renegd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ - ( tan ‘ 𝐴 ) ) = - ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
| 123 | 120 122 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ - 𝐴 ) ) = - ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
| 124 | 116 123 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → 0 < - ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
| 125 | 9 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) ∈ ℝ ) |
| 126 | 125 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) ∈ ℝ ) |
| 127 | 126 | lt0neg1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ( ℜ ‘ ( tan ‘ 𝐴 ) ) < 0 ↔ 0 < - ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) ) |
| 128 | 124 127 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) < 0 ) |
| 129 | 128 | lt0ne0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) ≠ 0 ) |
| 130 | atanlogsub | ⊢ ( ( ( tan ‘ 𝐴 ) ∈ dom arctan ∧ ( ℜ ‘ ( tan ‘ 𝐴 ) ) ≠ 0 ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) | |
| 131 | 3 129 130 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
| 132 | 1re | ⊢ 1 ∈ ℝ | |
| 133 | ioossre | ⊢ ( - 1 (,) 1 ) ⊆ ℝ | |
| 134 | 7 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → i ∈ ℂ ) |
| 135 | 11 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) |
| 136 | ine0 | ⊢ i ≠ 0 | |
| 137 | 136 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → i ≠ 0 ) |
| 138 | ixi | ⊢ ( i · i ) = - 1 | |
| 139 | 138 | oveq1i | ⊢ ( ( i · i ) · ( tan ‘ 𝐴 ) ) = ( - 1 · ( tan ‘ 𝐴 ) ) |
| 140 | 9 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( tan ‘ 𝐴 ) ∈ ℂ ) |
| 141 | 140 | mulm1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - 1 · ( tan ‘ 𝐴 ) ) = - ( tan ‘ 𝐴 ) ) |
| 142 | 118 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |
| 143 | 141 142 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - 1 · ( tan ‘ 𝐴 ) ) = ( tan ‘ - 𝐴 ) ) |
| 144 | 139 143 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · i ) · ( tan ‘ 𝐴 ) ) = ( tan ‘ - 𝐴 ) ) |
| 145 | 134 134 140 | mulassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · i ) · ( tan ‘ 𝐴 ) ) = ( i · ( i · ( tan ‘ 𝐴 ) ) ) ) |
| 146 | 138 | oveq1i | ⊢ ( ( i · i ) · 𝐴 ) = ( - 1 · 𝐴 ) |
| 147 | 64 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℂ ) |
| 148 | 147 | mulm1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 149 | 146 148 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · i ) · 𝐴 ) = - 𝐴 ) |
| 150 | 134 134 147 | mulassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) |
| 151 | 149 150 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → - 𝐴 = ( i · ( i · 𝐴 ) ) ) |
| 152 | 151 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( tan ‘ - 𝐴 ) = ( tan ‘ ( i · ( i · 𝐴 ) ) ) ) |
| 153 | 144 145 152 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( i · ( tan ‘ 𝐴 ) ) ) = ( tan ‘ ( i · ( i · 𝐴 ) ) ) ) |
| 154 | 134 135 137 153 | mvllmuld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) = ( ( tan ‘ ( i · ( i · 𝐴 ) ) ) / i ) ) |
| 155 | 76 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 156 | reim | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) | |
| 157 | 156 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
| 158 | 157 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ℜ ‘ 𝐴 ) = 0 ↔ ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) ) |
| 159 | 158 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) |
| 160 | 155 159 | reim0bd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ∈ ℝ ) |
| 161 | tanhbnd | ⊢ ( ( i · 𝐴 ) ∈ ℝ → ( ( tan ‘ ( i · ( i · 𝐴 ) ) ) / i ) ∈ ( - 1 (,) 1 ) ) | |
| 162 | 160 161 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( tan ‘ ( i · ( i · 𝐴 ) ) ) / i ) ∈ ( - 1 (,) 1 ) ) |
| 163 | 154 162 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ( - 1 (,) 1 ) ) |
| 164 | 133 163 | sselid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ℝ ) |
| 165 | readdcl | ⊢ ( ( 1 ∈ ℝ ∧ ( i · ( tan ‘ 𝐴 ) ) ∈ ℝ ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ ) | |
| 166 | 132 164 165 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 167 | df-neg | ⊢ - 1 = ( 0 − 1 ) | |
| 168 | eliooord | ⊢ ( ( i · ( tan ‘ 𝐴 ) ) ∈ ( - 1 (,) 1 ) → ( - 1 < ( i · ( tan ‘ 𝐴 ) ) ∧ ( i · ( tan ‘ 𝐴 ) ) < 1 ) ) | |
| 169 | 163 168 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - 1 < ( i · ( tan ‘ 𝐴 ) ) ∧ ( i · ( tan ‘ 𝐴 ) ) < 1 ) ) |
| 170 | 169 | simpld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → - 1 < ( i · ( tan ‘ 𝐴 ) ) ) |
| 171 | 167 170 | eqbrtrrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( 0 − 1 ) < ( i · ( tan ‘ 𝐴 ) ) ) |
| 172 | 0red | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 0 ∈ ℝ ) | |
| 173 | 132 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 1 ∈ ℝ ) |
| 174 | 172 173 164 | ltsubadd2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( 0 − 1 ) < ( i · ( tan ‘ 𝐴 ) ) ↔ 0 < ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) |
| 175 | 171 174 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 0 < ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) |
| 176 | 166 175 | elrpd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 177 | 176 | relogcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 178 | 169 | simprd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) < 1 ) |
| 179 | difrp | ⊢ ( ( ( i · ( tan ‘ 𝐴 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( i · ( tan ‘ 𝐴 ) ) < 1 ↔ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ+ ) ) | |
| 180 | 164 132 179 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · ( tan ‘ 𝐴 ) ) < 1 ↔ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ+ ) ) |
| 181 | 178 180 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 182 | 181 | relogcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 183 | 177 182 | resubcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) |
| 184 | relogrn | ⊢ ( ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ℝ → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) | |
| 185 | 183 184 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
| 186 | 64 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 187 | 186 | recld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 188 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ 𝐴 ) ) | |
| 189 | 102 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) |
| 190 | 189 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) |
| 191 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) ) | |
| 192 | 109 110 191 | mp2an | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
| 193 | 187 188 190 192 | syl3anbrc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
| 194 | tanregt0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) | |
| 195 | 64 193 194 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
| 196 | 195 | gt0ne0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) ≠ 0 ) |
| 197 | 3 196 130 | syl2an2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
| 198 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 199 | 198 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 200 | 0re | ⊢ 0 ∈ ℝ | |
| 201 | lttri4 | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) < 0 ∨ ( ℜ ‘ 𝐴 ) = 0 ∨ 0 < ( ℜ ‘ 𝐴 ) ) ) | |
| 202 | 199 200 201 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ℜ ‘ 𝐴 ) < 0 ∨ ( ℜ ‘ 𝐴 ) = 0 ∨ 0 < ( ℜ ‘ 𝐴 ) ) ) |
| 203 | 131 185 197 202 | mpjao3dan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
| 204 | logef | ⊢ ( ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) = ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) | |
| 205 | 203 204 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) = ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) |
| 206 | 2cn | ⊢ 2 ∈ ℂ | |
| 207 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 2 · ( i · 𝐴 ) ) ∈ ℂ ) | |
| 208 | 206 76 207 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( i · 𝐴 ) ) ∈ ℂ ) |
| 209 | picn | ⊢ π ∈ ℂ | |
| 210 | 2ne0 | ⊢ 2 ≠ 0 | |
| 211 | divneg | ⊢ ( ( π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( π / 2 ) = ( - π / 2 ) ) | |
| 212 | 209 206 210 211 | mp3an | ⊢ - ( π / 2 ) = ( - π / 2 ) |
| 213 | 212 103 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( - π / 2 ) < ( ℜ ‘ 𝐴 ) ) |
| 214 | pire | ⊢ π ∈ ℝ | |
| 215 | 214 | renegcli | ⊢ - π ∈ ℝ |
| 216 | 215 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - π ∈ ℝ ) |
| 217 | 2re | ⊢ 2 ∈ ℝ | |
| 218 | 217 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 2 ∈ ℝ ) |
| 219 | 2pos | ⊢ 0 < 2 | |
| 220 | 219 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 0 < 2 ) |
| 221 | ltdivmul | ⊢ ( ( - π ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( - π / 2 ) < ( ℜ ‘ 𝐴 ) ↔ - π < ( 2 · ( ℜ ‘ 𝐴 ) ) ) ) | |
| 222 | 216 199 218 220 221 | syl112anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( - π / 2 ) < ( ℜ ‘ 𝐴 ) ↔ - π < ( 2 · ( ℜ ‘ 𝐴 ) ) ) ) |
| 223 | 213 222 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - π < ( 2 · ( ℜ ‘ 𝐴 ) ) ) |
| 224 | immul2 | ⊢ ( ( 2 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) = ( 2 · ( ℑ ‘ ( i · 𝐴 ) ) ) ) | |
| 225 | 217 76 224 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) = ( 2 · ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 226 | 157 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( ℜ ‘ 𝐴 ) ) = ( 2 · ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
| 227 | 225 226 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) = ( 2 · ( ℜ ‘ 𝐴 ) ) ) |
| 228 | 223 227 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - π < ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) ) |
| 229 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 2 · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 230 | 217 199 229 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
| 231 | 214 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → π ∈ ℝ ) |
| 232 | ltmuldiv2 | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ π ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · ( ℜ ‘ 𝐴 ) ) < π ↔ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) | |
| 233 | 199 231 218 220 232 | syl112anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( 2 · ( ℜ ‘ 𝐴 ) ) < π ↔ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
| 234 | 189 233 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( ℜ ‘ 𝐴 ) ) < π ) |
| 235 | 230 231 234 | ltled | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( ℜ ‘ 𝐴 ) ) ≤ π ) |
| 236 | 227 235 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) ≤ π ) |
| 237 | ellogrn | ⊢ ( ( 2 · ( i · 𝐴 ) ) ∈ ran log ↔ ( ( 2 · ( i · 𝐴 ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) ∧ ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) ≤ π ) ) | |
| 238 | 208 228 236 237 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( i · 𝐴 ) ) ∈ ran log ) |
| 239 | logef | ⊢ ( ( 2 · ( i · 𝐴 ) ) ∈ ran log → ( log ‘ ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) = ( 2 · ( i · 𝐴 ) ) ) | |
| 240 | 238 239 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) = ( 2 · ( i · 𝐴 ) ) ) |
| 241 | 93 205 240 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 2 · ( i · 𝐴 ) ) ) |
| 242 | 241 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = - ( 2 · ( i · 𝐴 ) ) ) |
| 243 | 22 242 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) = - ( 2 · ( i · 𝐴 ) ) ) |
| 244 | 243 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · - ( 2 · ( i · 𝐴 ) ) ) ) |
| 245 | halfcl | ⊢ ( i ∈ ℂ → ( i / 2 ) ∈ ℂ ) | |
| 246 | 7 245 | mp1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i / 2 ) ∈ ℂ ) |
| 247 | 206 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 2 ∈ ℂ ) |
| 248 | 246 247 79 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( i / 2 ) · 2 ) · - ( i · 𝐴 ) ) = ( ( i / 2 ) · ( 2 · - ( i · 𝐴 ) ) ) ) |
| 249 | 7 206 210 | divcan1i | ⊢ ( ( i / 2 ) · 2 ) = i |
| 250 | 249 | oveq1i | ⊢ ( ( ( i / 2 ) · 2 ) · - ( i · 𝐴 ) ) = ( i · - ( i · 𝐴 ) ) |
| 251 | 33 33 51 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · i ) · - 𝐴 ) = ( i · ( i · - 𝐴 ) ) ) |
| 252 | 138 | oveq1i | ⊢ ( ( i · i ) · - 𝐴 ) = ( - 1 · - 𝐴 ) |
| 253 | mul2neg | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 1 · - 𝐴 ) = ( 1 · 𝐴 ) ) | |
| 254 | 6 64 253 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( - 1 · - 𝐴 ) = ( 1 · 𝐴 ) ) |
| 255 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 256 | 255 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 257 | 254 256 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( - 1 · - 𝐴 ) = 𝐴 ) |
| 258 | 252 257 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · i ) · - 𝐴 ) = 𝐴 ) |
| 259 | 66 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( i · - 𝐴 ) ) = ( i · - ( i · 𝐴 ) ) ) |
| 260 | 251 258 259 | 3eqtr3rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · - ( i · 𝐴 ) ) = 𝐴 ) |
| 261 | 250 260 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( i / 2 ) · 2 ) · - ( i · 𝐴 ) ) = 𝐴 ) |
| 262 | mulneg2 | ⊢ ( ( 2 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 2 · - ( i · 𝐴 ) ) = - ( 2 · ( i · 𝐴 ) ) ) | |
| 263 | 206 76 262 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · - ( i · 𝐴 ) ) = - ( 2 · ( i · 𝐴 ) ) ) |
| 264 | 263 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i / 2 ) · ( 2 · - ( i · 𝐴 ) ) ) = ( ( i / 2 ) · - ( 2 · ( i · 𝐴 ) ) ) ) |
| 265 | 248 261 264 | 3eqtr3rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i / 2 ) · - ( 2 · ( i · 𝐴 ) ) ) = 𝐴 ) |
| 266 | 5 244 265 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arctan ‘ ( tan ‘ 𝐴 ) ) = 𝐴 ) |