This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eflog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dflog2 | ⊢ log = ◡ ( exp ↾ ran log ) | |
| 2 | 1 | fveq1i | ⊢ ( log ‘ 𝐴 ) = ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) |
| 3 | 2 | fveq2i | ⊢ ( ( exp ↾ ran log ) ‘ ( log ‘ 𝐴 ) ) = ( ( exp ↾ ran log ) ‘ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) ) |
| 4 | logrncl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log ) | |
| 5 | 4 | fvresd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ↾ ran log ) ‘ ( log ‘ 𝐴 ) ) = ( exp ‘ ( log ‘ 𝐴 ) ) ) |
| 6 | eldifsn | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) | |
| 7 | eff1o2 | ⊢ ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) | |
| 8 | f1ocnvfv2 | ⊢ ( ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ↾ ran log ) ‘ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) ) = 𝐴 ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → ( ( exp ↾ ran log ) ‘ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) ) = 𝐴 ) |
| 10 | 6 9 | sylbir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( exp ↾ ran log ) ‘ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) ) = 𝐴 ) |
| 11 | 3 5 10 | 3eqtr3a | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |