This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This form of atandm is a bit more useful for showing that the logarithms in df-atan are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandm2 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atandm | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) | |
| 2 | 3anass | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ↔ ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) ) | |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 7 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ( 1 − ( i · 𝐴 ) ) = 0 ↔ 1 = ( i · 𝐴 ) ) ) | |
| 8 | 3 6 7 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) = 0 ↔ 1 = ( i · 𝐴 ) ) ) |
| 9 | 4 4 | mulneg2i | ⊢ ( i · - i ) = - ( i · i ) |
| 10 | ixi | ⊢ ( i · i ) = - 1 | |
| 11 | 10 | negeqi | ⊢ - ( i · i ) = - - 1 |
| 12 | negneg1e1 | ⊢ - - 1 = 1 | |
| 13 | 9 11 12 | 3eqtri | ⊢ ( i · - i ) = 1 |
| 14 | 13 | eqeq2i | ⊢ ( ( i · 𝐴 ) = ( i · - i ) ↔ ( i · 𝐴 ) = 1 ) |
| 15 | eqcom | ⊢ ( ( i · 𝐴 ) = 1 ↔ 1 = ( i · 𝐴 ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ( i · 𝐴 ) = ( i · - i ) ↔ 1 = ( i · 𝐴 ) ) |
| 17 | 8 16 | bitr4di | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) = 0 ↔ ( i · 𝐴 ) = ( i · - i ) ) ) |
| 18 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 19 | 4 | negcli | ⊢ - i ∈ ℂ |
| 20 | 19 | a1i | ⊢ ( 𝐴 ∈ ℂ → - i ∈ ℂ ) |
| 21 | 4 | a1i | ⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
| 22 | ine0 | ⊢ i ≠ 0 | |
| 23 | 22 | a1i | ⊢ ( 𝐴 ∈ ℂ → i ≠ 0 ) |
| 24 | 18 20 21 23 | mulcand | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) = ( i · - i ) ↔ 𝐴 = - i ) ) |
| 25 | 17 24 | bitrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) = 0 ↔ 𝐴 = - i ) ) |
| 26 | 25 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ↔ 𝐴 ≠ - i ) ) |
| 27 | addcom | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + 1 ) ) | |
| 28 | 3 6 27 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + 1 ) ) |
| 29 | subneg | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( i · 𝐴 ) − - 1 ) = ( ( i · 𝐴 ) + 1 ) ) | |
| 30 | 6 3 29 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) − - 1 ) = ( ( i · 𝐴 ) + 1 ) ) |
| 31 | 28 30 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( i · 𝐴 ) ) = ( ( i · 𝐴 ) − - 1 ) ) |
| 32 | 31 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) = 0 ↔ ( ( i · 𝐴 ) − - 1 ) = 0 ) ) |
| 33 | 3 | negcli | ⊢ - 1 ∈ ℂ |
| 34 | subeq0 | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( ( i · 𝐴 ) − - 1 ) = 0 ↔ ( i · 𝐴 ) = - 1 ) ) | |
| 35 | 6 33 34 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) − - 1 ) = 0 ↔ ( i · 𝐴 ) = - 1 ) ) |
| 36 | 32 35 | bitrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) = 0 ↔ ( i · 𝐴 ) = - 1 ) ) |
| 37 | 10 | eqeq2i | ⊢ ( ( i · 𝐴 ) = ( i · i ) ↔ ( i · 𝐴 ) = - 1 ) |
| 38 | 36 37 | bitr4di | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) = 0 ↔ ( i · 𝐴 ) = ( i · i ) ) ) |
| 39 | 18 21 21 23 | mulcand | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) = ( i · i ) ↔ 𝐴 = i ) ) |
| 40 | 38 39 | bitrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) = 0 ↔ 𝐴 = i ) ) |
| 41 | 40 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) ≠ 0 ↔ 𝐴 ≠ i ) ) |
| 42 | 26 41 | anbi12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ↔ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
| 43 | 42 | pm5.32i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
| 44 | 3anass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) | |
| 45 | 43 44 | bitr4i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |
| 46 | 2 45 | bitri | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |
| 47 | 1 46 | bitr4i | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |