This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | immul2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( ℑ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | immul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 4 | rere | ⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ 𝐴 ) = 𝐴 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) = ( 𝐴 · ( ℑ ‘ 𝐵 ) ) ) |
| 7 | reim0 | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 ) | |
| 8 | 7 | oveq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) = ( 0 · ( ℜ ‘ 𝐵 ) ) ) |
| 9 | recl | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) | |
| 10 | 9 | recnd | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 11 | 10 | mul02d | ⊢ ( 𝐵 ∈ ℂ → ( 0 · ( ℜ ‘ 𝐵 ) ) = 0 ) |
| 12 | 8 11 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) = 0 ) |
| 13 | 6 12 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) = ( ( 𝐴 · ( ℑ ‘ 𝐵 ) ) + 0 ) ) |
| 14 | imcl | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) | |
| 15 | 14 | recnd | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 16 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( 𝐴 · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) | |
| 17 | 1 15 16 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 18 | 17 | addridd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · ( ℑ ‘ 𝐵 ) ) + 0 ) = ( 𝐴 · ( ℑ ‘ 𝐵 ) ) ) |
| 19 | 3 13 18 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( ℑ ‘ 𝐵 ) ) ) |