This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltdivmul | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐶 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
| 3 | 2 | adantrr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐶 · 𝐵 ) ∈ ℝ ) |
| 5 | ltdiv1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐶 · 𝐵 ) ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < ( 𝐶 · 𝐵 ) ↔ ( 𝐴 / 𝐶 ) < ( ( 𝐶 · 𝐵 ) / 𝐶 ) ) ) | |
| 6 | 4 5 | syld3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < ( 𝐶 · 𝐵 ) ↔ ( 𝐴 / 𝐶 ) < ( ( 𝐶 · 𝐵 ) / 𝐶 ) ) ) |
| 7 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐵 ∈ ℂ ) |
| 9 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 10 | 9 | ad2antrl | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐶 ∈ ℂ ) |
| 11 | gt0ne0 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐶 ≠ 0 ) |
| 13 | 8 10 12 | divcan3d | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐶 · 𝐵 ) / 𝐶 ) = 𝐵 ) |
| 15 | 14 | breq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐶 ) < ( ( 𝐶 · 𝐵 ) / 𝐶 ) ↔ ( 𝐴 / 𝐶 ) < 𝐵 ) ) |
| 16 | 6 15 | bitr2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 / 𝐶 ) < 𝐵 ↔ 𝐴 < ( 𝐶 · 𝐵 ) ) ) |