This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosneg | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negicn | ⊢ - i ∈ ℂ | |
| 2 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) ∈ ℂ ) |
| 4 | efcl | ⊢ ( ( - i · 𝐴 ) ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) |
| 6 | ax-icn | ⊢ i ∈ ℂ | |
| 7 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 9 | efcl | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 11 | mulneg12 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) | |
| 12 | 6 11 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
| 13 | 12 | eqcomd | ⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = ( - i · 𝐴 ) ) |
| 14 | 13 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) |
| 15 | mul2neg | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · - 𝐴 ) = ( i · 𝐴 ) ) | |
| 16 | 6 15 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · - 𝐴 ) = ( i · 𝐴 ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · - 𝐴 ) ) = ( exp ‘ ( i · 𝐴 ) ) ) |
| 18 | 14 17 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) + ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 19 | 5 10 18 | comraddd | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) / 2 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) |
| 21 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 22 | cosval | ⊢ ( - 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) / 2 ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( ( ( exp ‘ ( i · - 𝐴 ) ) + ( exp ‘ ( - i · - 𝐴 ) ) ) / 2 ) ) |
| 24 | cosval | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) | |
| 25 | 20 23 24 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |