This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanval | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( i · 𝑥 ) = ( i · 𝐴 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( 1 − ( i · 𝑥 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 3 | 2 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( log ‘ ( 1 − ( i · 𝑥 ) ) ) = ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) |
| 4 | 1 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( 1 + ( i · 𝑥 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( log ‘ ( 1 + ( i · 𝑥 ) ) ) = ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
| 6 | 3 5 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 8 | df-atan | ⊢ arctan = ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) | |
| 9 | ovex | ⊢ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝐴 ∈ ( ℂ ∖ { - i , i } ) → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |
| 11 | atanf | ⊢ arctan : ( ℂ ∖ { - i , i } ) ⟶ ℂ | |
| 12 | 11 | fdmi | ⊢ dom arctan = ( ℂ ∖ { - i , i } ) |
| 13 | 10 12 | eleq2s | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) |