This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real part of the tangent of a complex number with real part in the open interval ( 0 (,) ( _pi / 2 ) ) is positive. (Contributed by Mario Carneiro, 5-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanregt0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 4 | 3 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 5 | 3 | rered | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ℜ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 6 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 7 | 6 | rexri | ⊢ - ( π / 2 ) ∈ ℝ* |
| 8 | 0re | ⊢ 0 ∈ ℝ | |
| 9 | pirp | ⊢ π ∈ ℝ+ | |
| 10 | rphalfcl | ⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) | |
| 11 | rpgt0 | ⊢ ( ( π / 2 ) ∈ ℝ+ → 0 < ( π / 2 ) ) | |
| 12 | 9 10 11 | mp2b | ⊢ 0 < ( π / 2 ) |
| 13 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 14 | lt0neg2 | ⊢ ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) |
| 16 | 12 15 | mpbi | ⊢ - ( π / 2 ) < 0 |
| 17 | 6 8 16 | ltleii | ⊢ - ( π / 2 ) ≤ 0 |
| 18 | iooss1 | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ - ( π / 2 ) ≤ 0 ) → ( 0 (,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) ) | |
| 19 | 7 17 18 | mp2an | ⊢ ( 0 (,) ( π / 2 ) ) ⊆ ( - ( π / 2 ) (,) ( π / 2 ) ) |
| 20 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) | |
| 21 | 19 20 | sselid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 22 | 5 21 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ℜ ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 23 | cosne0 | ⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ ( ℜ ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ ( ℜ ‘ 𝐴 ) ) ≠ 0 ) | |
| 24 | 4 22 23 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( cos ‘ ( ℜ ‘ 𝐴 ) ) ≠ 0 ) |
| 25 | 4 24 | tancld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( tan ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
| 26 | ax-icn | ⊢ i ∈ ℂ | |
| 27 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 29 | 28 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 30 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 31 | 26 29 30 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 32 | rpcoshcl | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℝ → ( cos ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ+ ) | |
| 33 | 28 32 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( cos ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
| 34 | 33 | rpne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( cos ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ≠ 0 ) |
| 35 | 31 34 | tancld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 36 | 25 35 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 37 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) → ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℂ ) | |
| 38 | 1 36 37 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℂ ) |
| 39 | replim | ⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) | |
| 40 | 39 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 41 | 40 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( cos ‘ 𝐴 ) = ( cos ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 42 | cosne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ 𝐴 ) ≠ 0 ) | |
| 43 | 21 42 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 44 | 41 43 | eqnetrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( cos ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ≠ 0 ) |
| 45 | tanaddlem | ⊢ ( ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) ∧ ( ( cos ‘ ( ℜ ‘ 𝐴 ) ) ≠ 0 ∧ ( cos ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ≠ 0 ) ) → ( ( cos ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ≠ 0 ↔ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ≠ 1 ) ) | |
| 46 | 4 31 24 34 45 | syl22anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( cos ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ≠ 0 ↔ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ≠ 1 ) ) |
| 47 | 44 46 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ≠ 1 ) |
| 48 | 47 | necomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 1 ≠ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 49 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) → ( ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = 0 ↔ 1 = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) | |
| 50 | 49 | necon3bid | ⊢ ( ( 1 ∈ ℂ ∧ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) → ( ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ≠ 0 ↔ 1 ≠ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 51 | 1 36 50 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ≠ 0 ↔ 1 ≠ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 52 | 48 51 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ≠ 0 ) |
| 53 | 38 52 | absrpcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ∈ ℝ+ ) |
| 54 | 2z | ⊢ 2 ∈ ℤ | |
| 55 | rpexpcl | ⊢ ( ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ∈ ℝ+ ) | |
| 56 | 53 54 55 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ∈ ℝ+ ) |
| 57 | 56 | rprecred | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) ∈ ℝ ) |
| 58 | 38 | cjcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ∈ ℂ ) |
| 59 | 25 35 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 60 | 58 59 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℂ ) |
| 61 | 60 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ∈ ℝ ) |
| 62 | 56 | rpreccld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) ∈ ℝ+ ) |
| 63 | 62 | rpgt0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) ) |
| 64 | 3 24 | retancld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( tan ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
| 65 | 1re | ⊢ 1 ∈ ℝ | |
| 66 | retanhcl | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℝ → ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∈ ℝ ) | |
| 67 | 28 66 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∈ ℝ ) |
| 68 | 67 | resqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ∈ ℝ ) |
| 69 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ∈ ℝ ) → ( 1 − ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ∈ ℝ ) | |
| 70 | 65 68 69 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 1 − ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ∈ ℝ ) |
| 71 | tanrpcl | ⊢ ( ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) → ( tan ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ+ ) | |
| 72 | 71 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( tan ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ+ ) |
| 73 | 72 | rpgt0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( tan ‘ ( ℜ ‘ 𝐴 ) ) ) |
| 74 | absresq | ⊢ ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∈ ℝ → ( ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ↑ 2 ) = ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) | |
| 75 | 67 74 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ↑ 2 ) = ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) |
| 76 | tanhbnd | ⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℝ → ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∈ ( - 1 (,) 1 ) ) | |
| 77 | 28 76 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∈ ( - 1 (,) 1 ) ) |
| 78 | eliooord | ⊢ ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∈ ( - 1 (,) 1 ) → ( - 1 < ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∧ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) < 1 ) ) | |
| 79 | 77 78 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( - 1 < ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∧ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) < 1 ) ) |
| 80 | abslt | ⊢ ( ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) < 1 ↔ ( - 1 < ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∧ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) < 1 ) ) ) | |
| 81 | 67 65 80 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) < 1 ↔ ( - 1 < ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∧ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) < 1 ) ) ) |
| 82 | 79 81 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) < 1 ) |
| 83 | 67 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∈ ℂ ) |
| 84 | 83 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ∈ ℝ ) |
| 85 | 65 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 1 ∈ ℝ ) |
| 86 | 83 | absge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 ≤ ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 87 | 0le1 | ⊢ 0 ≤ 1 | |
| 88 | 87 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 ≤ 1 ) |
| 89 | 84 85 86 88 | lt2sqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) < 1 ↔ ( ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ↑ 2 ) < ( 1 ↑ 2 ) ) ) |
| 90 | 82 89 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ↑ 2 ) < ( 1 ↑ 2 ) ) |
| 91 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 92 | 90 91 | breqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( abs ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ↑ 2 ) < 1 ) |
| 93 | 75 92 | eqbrtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) < 1 ) |
| 94 | posdif | ⊢ ( ( ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) < 1 ↔ 0 < ( 1 − ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ) ) | |
| 95 | 68 65 94 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) < 1 ↔ 0 < ( 1 − ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ) ) |
| 96 | 93 95 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( 1 − ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ) |
| 97 | 64 70 73 96 | mulgt0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( 1 − ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ) ) |
| 98 | 38 | recjd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) = ( ℜ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 99 | resub | ⊢ ( ( 1 ∈ ℂ ∧ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) → ( ℜ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) | |
| 100 | 1 36 99 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 101 | re1 | ⊢ ( ℜ ‘ 1 ) = 1 | |
| 102 | 101 | oveq1i | ⊢ ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( 1 − ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 103 | 64 35 | remul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ℜ ‘ ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 104 | negicn | ⊢ - i ∈ ℂ | |
| 105 | 104 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → - i ∈ ℂ ) |
| 106 | ine0 | ⊢ i ≠ 0 | |
| 107 | 26 106 | negne0i | ⊢ - i ≠ 0 |
| 108 | 107 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → - i ≠ 0 ) |
| 109 | 35 105 108 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ∈ ℂ ) |
| 110 | imre | ⊢ ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ∈ ℂ → ( ℑ ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ) = ( ℜ ‘ ( - i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ) ) ) | |
| 111 | 109 110 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ) = ( ℜ ‘ ( - i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ) ) ) |
| 112 | 26 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → i ∈ ℂ ) |
| 113 | 106 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → i ≠ 0 ) |
| 114 | 35 112 113 | divneg2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → - ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) = ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ) |
| 115 | 67 | renegcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → - ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ∈ ℝ ) |
| 116 | 114 115 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ∈ ℝ ) |
| 117 | 116 | reim0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ) = 0 ) |
| 118 | 35 105 108 | divcan2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( - i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ) = ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 119 | 118 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( - i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / - i ) ) ) = ( ℜ ‘ ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 120 | 111 117 119 | 3eqtr3rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = 0 ) |
| 121 | 120 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ℜ ‘ ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · 0 ) ) |
| 122 | 25 | mul01d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · 0 ) = 0 ) |
| 123 | 103 121 122 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = 0 ) |
| 124 | 123 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 1 − ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( 1 − 0 ) ) |
| 125 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 126 | 124 125 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 1 − ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = 1 ) |
| 127 | 102 126 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ℜ ‘ 1 ) − ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = 1 ) |
| 128 | 98 100 127 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) = 1 ) |
| 129 | 35 112 113 | divcan2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) = ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 130 | 129 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 131 | 130 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) ) = ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 132 | 64 67 | crred | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) ) = ( tan ‘ ( ℜ ‘ 𝐴 ) ) ) |
| 133 | 131 132 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( tan ‘ ( ℜ ‘ 𝐴 ) ) ) |
| 134 | 128 133 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ℜ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) · ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( 1 · ( tan ‘ ( ℜ ‘ 𝐴 ) ) ) ) |
| 135 | mulcom | ⊢ ( ( 1 ∈ ℂ ∧ ( tan ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 · ( tan ‘ ( ℜ ‘ 𝐴 ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · 1 ) ) | |
| 136 | 1 25 135 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 1 · ( tan ‘ ( ℜ ‘ 𝐴 ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · 1 ) ) |
| 137 | 134 136 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ℜ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) · ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · 1 ) ) |
| 138 | 25 83 83 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) ) |
| 139 | 38 | imcjd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) = - ( ℑ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 140 | imsub | ⊢ ( ( 1 ∈ ℂ ∧ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ∈ ℂ ) → ( ℑ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) | |
| 141 | 1 36 140 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 142 | im1 | ⊢ ( ℑ ‘ 1 ) = 0 | |
| 143 | 142 | oveq1i | ⊢ ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( 0 − ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 144 | df-neg | ⊢ - ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( 0 − ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) | |
| 145 | 143 144 | eqtr4i | ⊢ ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = - ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 146 | 64 35 | immul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ℑ ‘ ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 147 | imval | ⊢ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ → ( ℑ ‘ ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ℜ ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) | |
| 148 | 35 147 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ℜ ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 149 | 67 | rered | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) = ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) |
| 150 | 148 149 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) |
| 151 | 150 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ℑ ‘ ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 152 | 146 151 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 153 | 152 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → - ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = - ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 154 | 145 153 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ℑ ‘ 1 ) − ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = - ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 155 | 141 154 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = - ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 156 | 155 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → - ( ℑ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = - - ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 157 | 64 67 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ∈ ℝ ) |
| 158 | 157 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ∈ ℂ ) |
| 159 | 158 | negnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → - - ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 160 | 139 156 159 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 161 | 130 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) ) = ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 162 | 64 67 | crimd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( i · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) ) = ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) |
| 163 | 161 162 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) |
| 164 | 160 163 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ℑ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) · ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 165 | 83 | sqvald | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) = ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) |
| 166 | 165 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) · ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ) ) ) |
| 167 | 138 164 166 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ℑ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) · ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ) |
| 168 | 137 167 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( ℜ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) · ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) − ( ( ℑ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) · ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) = ( ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · 1 ) − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ) ) |
| 169 | 58 59 | remuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ( ℜ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) · ( ℜ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) − ( ( ℑ ‘ ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) · ( ℑ ‘ ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 170 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 1 ∈ ℂ ) |
| 171 | 83 | sqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ∈ ℂ ) |
| 172 | 25 170 171 | subdid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( 1 − ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ) = ( ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · 1 ) − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ) ) |
| 173 | 168 169 172 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( 1 − ( ( ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) / i ) ↑ 2 ) ) ) ) |
| 174 | 97 173 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( ℜ ‘ ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 175 | 57 61 63 174 | mulgt0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) · ( ℜ ‘ ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 176 | 40 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( tan ‘ 𝐴 ) = ( tan ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
| 177 | tanadd | ⊢ ( ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) ∧ ( ( cos ‘ ( ℜ ‘ 𝐴 ) ) ≠ 0 ∧ ( cos ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ≠ 0 ∧ ( cos ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ≠ 0 ) ) → ( tan ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) / ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) | |
| 178 | 4 31 24 34 44 177 | syl23anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( tan ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) / ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 179 | recval | ⊢ ( ( ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ∈ ℂ ∧ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ≠ 0 ) → ( 1 / ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) ) | |
| 180 | 38 52 179 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( 1 / ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) ) |
| 181 | 180 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( 1 / ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 182 | 59 38 52 | divrec2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) / ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( 1 / ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 183 | 38 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ∈ ℝ ) |
| 184 | 183 | resqcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ∈ ℝ ) |
| 185 | 184 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ∈ ℂ ) |
| 186 | 56 | rpne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ≠ 0 ) |
| 187 | 58 59 185 186 | div23d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) = ( ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
| 188 | 181 182 187 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) / ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) = ( ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) ) |
| 189 | 176 178 188 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( tan ‘ 𝐴 ) = ( ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) ) |
| 190 | 60 185 186 | divrec2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) = ( ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) · ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 191 | 189 190 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( tan ‘ 𝐴 ) = ( ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) · ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) |
| 192 | 191 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) = ( ℜ ‘ ( ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) · ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 193 | 57 60 | remul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) · ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) = ( ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) · ( ℜ ‘ ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 194 | 192 193 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) = ( ( 1 / ( ( abs ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ↑ 2 ) ) · ( ℜ ‘ ( ( ∗ ‘ ( 1 − ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) · ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) · ( ( tan ‘ ( ℜ ‘ 𝐴 ) ) + ( tan ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) ) ) |
| 195 | 175 194 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |