This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanval | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 2 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 3 | 2 | anim1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ) |
| 4 | eldifsn | ⊢ ( ( cos ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 6 | cosf | ⊢ cos : ℂ ⟶ ℂ | |
| 7 | ffn | ⊢ ( cos : ℂ ⟶ ℂ → cos Fn ℂ ) | |
| 8 | elpreima | ⊢ ( cos Fn ℂ → ( 𝐴 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ) ) ) | |
| 9 | 6 7 8 | mp2b | ⊢ ( 𝐴 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
| 10 | 1 5 9 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → 𝐴 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( sin ‘ 𝑥 ) = ( sin ‘ 𝐴 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( cos ‘ 𝑥 ) = ( cos ‘ 𝐴 ) ) | |
| 13 | 11 12 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 14 | df-tan | ⊢ tan = ( 𝑥 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) | |
| 15 | ovex | ⊢ ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ∈ V | |
| 16 | 13 14 15 | fvmpt | ⊢ ( 𝐴 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 17 | 10 16 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |