This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move the left term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvllmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| mvllmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| mvllmuld.3 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| mvllmuld.4 | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = 𝐶 ) | ||
| Assertion | mvllmuld | ⊢ ( 𝜑 → 𝐵 = ( 𝐶 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvllmuld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | mvllmuld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | mvllmuld.3 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 4 | mvllmuld.4 | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = 𝐶 ) | |
| 5 | 2 1 3 | divcan4d | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐴 ) / 𝐴 ) = 𝐵 ) |
| 6 | 1 2 | mulcomd | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 7 | 6 4 | eqtr3d | ⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) = 𝐶 ) |
| 8 | 7 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐵 · 𝐴 ) / 𝐴 ) = ( 𝐶 / 𝐴 ) ) |
| 9 | 5 8 | eqtr3d | ⊢ ( 𝜑 → 𝐵 = ( 𝐶 / 𝐴 ) ) |