This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The hyperbolic tangent of a real number is bounded by 1 . (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanhbnd | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ( - 1 (,) 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retanhcl | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 4 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 6 | rpcoshcl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ∈ ℝ+ ) | |
| 7 | 6 | rpne0d | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) |
| 8 | 5 7 | tancld | ⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 9 | 2 | a1i | ⊢ ( 𝐴 ∈ ℝ → i ∈ ℂ ) |
| 10 | ine0 | ⊢ i ≠ 0 | |
| 11 | 10 | a1i | ⊢ ( 𝐴 ∈ ℝ → i ≠ 0 ) |
| 12 | 8 9 11 | divnegd | ⊢ ( 𝐴 ∈ ℝ → - ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( - ( tan ‘ ( i · 𝐴 ) ) / i ) ) |
| 13 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) | |
| 14 | 2 3 13 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 15 | 14 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · - 𝐴 ) ) = ( tan ‘ - ( i · 𝐴 ) ) ) |
| 16 | tanneg | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( cos ‘ ( i · 𝐴 ) ) ≠ 0 ) → ( tan ‘ - ( i · 𝐴 ) ) = - ( tan ‘ ( i · 𝐴 ) ) ) | |
| 17 | 5 7 16 | syl2anc | ⊢ ( 𝐴 ∈ ℝ → ( tan ‘ - ( i · 𝐴 ) ) = - ( tan ‘ ( i · 𝐴 ) ) ) |
| 18 | 15 17 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( tan ‘ ( i · - 𝐴 ) ) = - ( tan ‘ ( i · 𝐴 ) ) ) |
| 19 | 18 | oveq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · - 𝐴 ) ) / i ) = ( - ( tan ‘ ( i · 𝐴 ) ) / i ) ) |
| 20 | 12 19 | eqtr4d | ⊢ ( 𝐴 ∈ ℝ → - ( ( tan ‘ ( i · 𝐴 ) ) / i ) = ( ( tan ‘ ( i · - 𝐴 ) ) / i ) ) |
| 21 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 22 | tanhlt1 | ⊢ ( - 𝐴 ∈ ℝ → ( ( tan ‘ ( i · - 𝐴 ) ) / i ) < 1 ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · - 𝐴 ) ) / i ) < 1 ) |
| 24 | 20 23 | eqbrtrd | ⊢ ( 𝐴 ∈ ℝ → - ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) |
| 25 | 1re | ⊢ 1 ∈ ℝ | |
| 26 | ltnegcon1 | ⊢ ( ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( - ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ↔ - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ) ) | |
| 27 | 1 25 26 | sylancl | ⊢ ( 𝐴 ∈ ℝ → ( - ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ↔ - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ) ) |
| 28 | 24 27 | mpbid | ⊢ ( 𝐴 ∈ ℝ → - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ) |
| 29 | tanhlt1 | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) | |
| 30 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 31 | 30 | rexri | ⊢ - 1 ∈ ℝ* |
| 32 | 25 | rexri | ⊢ 1 ∈ ℝ* |
| 33 | elioo2 | ⊢ ( ( - 1 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ( - 1 (,) 1 ) ↔ ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ∧ - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∧ ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) ) ) | |
| 34 | 31 32 33 | mp2an | ⊢ ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ( - 1 (,) 1 ) ↔ ( ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ℝ ∧ - 1 < ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∧ ( ( tan ‘ ( i · 𝐴 ) ) / i ) < 1 ) ) |
| 35 | 1 28 29 34 | syl3anbrc | ⊢ ( 𝐴 ∈ ℝ → ( ( tan ‘ ( i · 𝐴 ) ) / i ) ∈ ( - 1 (,) 1 ) ) |