This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| reim0bd.2 | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) = 0 ) | ||
| Assertion | reim0bd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | reim0bd.2 | ⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) = 0 ) | |
| 3 | reim0b | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 5 | 2 4 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |