This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018) (Proof shortened by Wolf Lammen, 20-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpjao3dan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| mpjao3dan.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) | ||
| mpjao3dan.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜒 ) | ||
| mpjao3dan.4 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) ) | ||
| Assertion | mpjao3dan | ⊢ ( 𝜑 → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 2 | mpjao3dan.2 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜒 ) | |
| 3 | mpjao3dan.3 | ⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜒 ) | |
| 4 | mpjao3dan.4 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) ) | |
| 5 | 1 2 3 | 3jaodan | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∨ 𝜃 ∨ 𝜏 ) ) → 𝜒 ) |
| 6 | 4 5 | mpdan | ⊢ ( 𝜑 → 𝜒 ) |