This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( 𝐴 − 𝐵 ) ) = ( ( exp ‘ 𝐴 ) / ( exp ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | efcl | ⊢ ( 𝐵 ∈ ℂ → ( exp ‘ 𝐵 ) ∈ ℂ ) | |
| 3 | efne0 | ⊢ ( 𝐵 ∈ ℂ → ( exp ‘ 𝐵 ) ≠ 0 ) | |
| 4 | divrec | ⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℂ ∧ ( exp ‘ 𝐵 ) ∈ ℂ ∧ ( exp ‘ 𝐵 ) ≠ 0 ) → ( ( exp ‘ 𝐴 ) / ( exp ‘ 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( 1 / ( exp ‘ 𝐵 ) ) ) ) | |
| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ 𝐴 ) / ( exp ‘ 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( 1 / ( exp ‘ 𝐵 ) ) ) ) |
| 6 | 5 | 3anidm23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ 𝐴 ) / ( exp ‘ 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( 1 / ( exp ‘ 𝐵 ) ) ) ) |
| 7 | efcan | ⊢ ( 𝐵 ∈ ℂ → ( ( exp ‘ 𝐵 ) · ( exp ‘ - 𝐵 ) ) = 1 ) | |
| 8 | 7 | eqcomd | ⊢ ( 𝐵 ∈ ℂ → 1 = ( ( exp ‘ 𝐵 ) · ( exp ‘ - 𝐵 ) ) ) |
| 9 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 10 | efcl | ⊢ ( - 𝐵 ∈ ℂ → ( exp ‘ - 𝐵 ) ∈ ℂ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐵 ∈ ℂ → ( exp ‘ - 𝐵 ) ∈ ℂ ) |
| 12 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 13 | divmul2 | ⊢ ( ( 1 ∈ ℂ ∧ ( exp ‘ - 𝐵 ) ∈ ℂ ∧ ( ( exp ‘ 𝐵 ) ∈ ℂ ∧ ( exp ‘ 𝐵 ) ≠ 0 ) ) → ( ( 1 / ( exp ‘ 𝐵 ) ) = ( exp ‘ - 𝐵 ) ↔ 1 = ( ( exp ‘ 𝐵 ) · ( exp ‘ - 𝐵 ) ) ) ) | |
| 14 | 12 13 | mp3an1 | ⊢ ( ( ( exp ‘ - 𝐵 ) ∈ ℂ ∧ ( ( exp ‘ 𝐵 ) ∈ ℂ ∧ ( exp ‘ 𝐵 ) ≠ 0 ) ) → ( ( 1 / ( exp ‘ 𝐵 ) ) = ( exp ‘ - 𝐵 ) ↔ 1 = ( ( exp ‘ 𝐵 ) · ( exp ‘ - 𝐵 ) ) ) ) |
| 15 | 11 2 3 14 | syl12anc | ⊢ ( 𝐵 ∈ ℂ → ( ( 1 / ( exp ‘ 𝐵 ) ) = ( exp ‘ - 𝐵 ) ↔ 1 = ( ( exp ‘ 𝐵 ) · ( exp ‘ - 𝐵 ) ) ) ) |
| 16 | 8 15 | mpbird | ⊢ ( 𝐵 ∈ ℂ → ( 1 / ( exp ‘ 𝐵 ) ) = ( exp ‘ - 𝐵 ) ) |
| 17 | 16 | oveq2d | ⊢ ( 𝐵 ∈ ℂ → ( ( exp ‘ 𝐴 ) · ( 1 / ( exp ‘ 𝐵 ) ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐵 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ 𝐴 ) · ( 1 / ( exp ‘ 𝐵 ) ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐵 ) ) ) |
| 19 | efadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( exp ‘ ( 𝐴 + - 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐵 ) ) ) | |
| 20 | 9 19 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( 𝐴 + - 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐵 ) ) ) |
| 21 | 18 20 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ 𝐴 ) · ( 1 / ( exp ‘ 𝐵 ) ) ) = ( exp ‘ ( 𝐴 + - 𝐵 ) ) ) |
| 22 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 23 | 22 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( 𝐴 + - 𝐵 ) ) = ( exp ‘ ( 𝐴 − 𝐵 ) ) ) |
| 24 | 6 21 23 | 3eqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( 𝐴 − 𝐵 ) ) = ( ( exp ‘ 𝐴 ) / ( exp ‘ 𝐵 ) ) ) |